Skip to main content
Log in

Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a non-invasive tumor ablation modality that can be enhanced in combination with concurrent chemotherapy. Previously, we demonstrated that liposomes containing a bilayer-anchored photosensitizer (porphyrin-phospholipid; PoP) can be loaded with drugs in their aqueous core to improve drug delivery and tumor ablation upon target tissue irradiation with red-light. In the present work, we demonstrate that this concept can be extended to drugs loaded within the hydrophobic bilayer of liposomes. Cabazitaxel (CTX) is a potent second generation taxane anti-cancer drug that was loaded in the bilayer of liposomes also containing 0.1 molar% PoP, generating CTX-loaded PoP liposomes (CTX-PoP-Lip). CTX-PoP-Lip showed unilamellar vesicle morphology, and exhibited integrity in storage and serum, while maintaining drug stability under laser irradiation. In vitro cell killing evaluation showed that red-light laser irradiation induced cytotoxicity in cells incubated with CTX-PoP-Lip, compared to control treatments. In vivo pharmacokinetic analysis revealed that following intravenous administration to mice, CTX and PoP exhibited somewhat altered circulation profiles, suggesting that the CTX may have exchanged with serum factors in blood. Nevertheless, when a single treatment of CTX-PoP-Lip with laser irradiation was administered to mice bearing human MIA Paca-2 tumors, tumors were effectively ablated whereas the equivalent chemotherapy and PDT monotherapies were ineffective. These results demonstrate the versatility of liposome delivery systems for achieving tumor ablation with chemophototherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer, Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Article  Google Scholar 

  2. Luo, D. D.; Carter, K. A.; Miranda, D.; Lovell, J. F. Chemophototherapy: An emerging treatment option for solid tumors, Adv. Sci. 2017, 4, 1600106.

    Article  Google Scholar 

  3. Carter, K. A.; Luo, D. D.; Geng, J. M.; Stern, S. T.; Lovell, J. F. Blood interactions, pharmacokinetics, and depth-dependent ablation of rat mammary tumors with photoactivatable, liposomal doxorubicin, Mol. Cancer Ther. 2019, 18, 592–601.

    Article  CAS  Google Scholar 

  4. Luo, D. D.; Carter, K. A.; Razi, A.; Geng, J. M.; Shao, S.; Giraldo, D.; Sunar, U.; Ortega, J.; Lovell, J. F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release, Biomaterials 2016, 75, 193–202.

    Article  CAS  Google Scholar 

  5. Luo, D. D.; Li, N.; Carter, K. A.; Lin, C. Y.; Geng, J. M.; Shao, S.; Huang, W. C.; Qin, Y. L.; Atilla-Gokcumen, G. E.; Lovell, J. F. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids, Small 2016, 12, 3039–3047.

    Article  CAS  Google Scholar 

  6. Carter, K. A.; Wang, S.; Geng, J. M.; Luo, D. D.; Shao, S.; Lovell, J. F. Metal chelation modulates phototherapeutic properties of mitoxantrone-loaded porphyrin-phospholipid liposomes, Mol. Pharmaceutics 2016, 13, 420–427.

    Article  CAS  Google Scholar 

  7. Luo, D. D.; Geng, J. M.; Li, N. S.; Carter, K. A.; Shao, S.; Atilla-Gokcumen, G. E.; Lovell, J. F. Vessel-targeted chemophototherapy with cationic porphyrin-phospholipid liposomes, Mol. Cancer Ther. 2017, 16, 2452–2461.

    Article  CAS  Google Scholar 

  8. Chitgupi, U.; Shao, S.; Carter, K. A.; Huang, W. C.; Lovell, J. F. Multicolor liposome mixtures for selective and selectable cargo release, Nano Lett. 2018, 18, 1331–1336.

    Article  CAS  Google Scholar 

  9. Miranda, D.; Carter, K.; Luo, D. D.; Shao, S.; Geng, J. M.; Li, C. N.; Chitgupi, U.; Turowski, S. G.; Li, N. S.; Atilla-Gokcumen, G. E. et al. Multifunctional liposomes for image-guided intratumoral chemo-phototherapy, Adv. Healthc. Mater. 2017, 6, 1700253.

    Article  Google Scholar 

  10. Carter, K. A.; Luo, D. D.; Razi, A.; Geng, J. M.; Shao, S.; Ortega, J.; Lovell, J. F. Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy, Theranostics 2016, 6, 2329–2336.

    Article  CAS  Google Scholar 

  11. Ghosh, S.; Carter, K. A.; Lovell, J. F. Liposomal formulations of photosensitizers, Biomaterials 2019, 218, 119341.

    Article  CAS  Google Scholar 

  12. Chang, E. L.; Bu, J. C.; Ding, L. L.; Lou, J. W. H.; Valic, M. S.; Cheng, M. H. Y.; Rosilio, V.; Chen, J.; Zheng, G. Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy, J. Nanobiotechnol. 2021, 19, 154.

    Article  CAS  Google Scholar 

  13. Wang, X. X.; Tong, J. W.; He, Z. Y.; Yang, X. L.; Meng, F. L.; Liang, H. G.; Zhang, X. P.; Luo, L. Paclitaxel-potentiated photodynamic theranostics for synergistic tumor ablation and precise anticancer efficacy monitoring, ACS Appl. Mater. Interfaces 2020, 12, 5476–5487.

    Article  CAS  Google Scholar 

  14. Yang, X. Y.; Shi, X. Q.; Zhang, Y. N; Xu, J. K.; Ji, J. B.; Ye, L.; Yi, F.; Zhai, G. X. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy, J. Control. Release 2020, 323, 333–349.

    Article  CAS  Google Scholar 

  15. Chang, J. E.; Cho, H. J.; Yi, E.; Kim, D. D.; Jheon, S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem, Photobiol. B:Biol. 2016, 158, 113–121.

    Article  CAS  Google Scholar 

  16. Gaio, E.; Conte, C.; Esposito, D.; Miotto, G.; Quaglia, F.; Moret, F.; Reddi, E. Co-delivery of docetaxel and disulfonate tetraphenyl chlorin in one nanoparticle produces strong synergism between chemo- and photodynamic therapy in drug-sensitive and -resistant cancer cells, Mol. Pharmaceutics 2018, 15, 4599–4611.

    Article  CAS  Google Scholar 

  17. Li, W. T.; Peng, J. R.; Tan, L. W.; Wu, J.; Shi, K.; Qu, Y.; Wei, X. W.; Qian, Z. Y. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles, Biomaterials 0166, 106, 119–133.

    Article  Google Scholar 

  18. Wang, D.; Zhang, S. P.; Zhang, T.; Wan, G. Y.; Chen, B. W.; Xiong, Q. Q.; Zhang, J.; Zhang, W. X.; Wang, Y. S. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy. Int. J. Nanomedicine 017, 12, 8649–8670.

  19. Zhang, Y. C.; Feng, L. Z.; Wang, J.; Tao, D. L.; Liang, C.; Cheng, L.; Hao, E. H.; Liu, Z. Surfactant-stripped micelles of near infrared dye and paclitaxel for photoacoustic imaging guided photothermal-chemotherapy, Small 2018, 14, 1802991.

    Article  Google Scholar 

  20. Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J. F.; Commerçon, A.; Lavelle, F.; Bissery, M. C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors, Clin. Cancer Res. 2013, 19, 2973–2983.

    Article  CAS  Google Scholar 

  21. De Bono, J. S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J. P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M. J.; Shen, L. J. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial, rinceet 0100, 376, 1147–1154.

    Google Scholar 

  22. Zhou, G. M.; Jin, X. Y.; Zhu, P.; Yao, J. U.; Zhang, Y. X.; Teng, L. S.; Lee, R. J.; Zhang, X. M.; Hong, W. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel, Anticancer Res. 2016, 36, 1649–1656.

    CAS  Google Scholar 

  23. Qu, N.; Lee, R. J.; Sun, Y. T.; Cai, G. S.; Wang, J. Y.; Wang, M. Q.; Lu, J. H.; Meng, Q. F.; Teng, L. R.; Wang, D. et al. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer, Int. J. Nanomedicine 2016, 11, 3451–3459.

    Article  CAS  Google Scholar 

  24. Sun, Y. T.; Zhao, Y. R.; Teng, S. S.; Hao, F.; Zhang, H.; Meng, F. C.; Zhao, X. T.; Zheng, X. L.; Bi, Y.; Yao, Y. C. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy, Int. J. Nanomedicine 2018, 14, 135–148.

    Article  Google Scholar 

  25. Qu, N.; Sun, Y. T.; Xie, J.; Teng, L. S. Preparation and evaluation of in vitro self-assembling HSA nanoparticles for cabazitaxel, Anticancer Agents Med. Chem. 2017, 17, 294–300.

    Article  CAS  Google Scholar 

  26. Meng, F. C.; Sun, Y. T.; Lee, R. J.; Wang, G. Y.; Zheng, X. L.; Zhang, H.; Fu, Y. G.; Yan, G. J.; Wang, Y. F.; Deng, W. Y. et al. Folate receptor-targeted albumin nanoparticles based on microfluidic technology to deliver cabazitaxel, Cancers 2019, 11, 1571.

    Article  CAS  Google Scholar 

  27. Kommineni, N.; Mahira, S.; Domb, A. J.; Khan, W. Cabazitaxel-loaded nanocarriers for cancer therapy with reduced side effects, Pharmaceutics 2019, 11, 141.

    Article  CAS  Google Scholar 

  28. Zeng, Y. Y.; Zeng, Y. J.; Zhang, N. N.; Li, C. X.; Xie, T.; Zeng, Z. W. The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and ß-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma, Molecules 2019, 24, 1697.

    Article  CAS  Google Scholar 

  29. Mahira, S.; Kommineni, N.; Husain, G. M.; Khan, W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer, Biomed. Pharmacother. 2019, 111, 803–817.

    Article  Google Scholar 

  30. Ahmad, A.; Sheikh, S.; Paithankar, M.; Deshpande, G.; Lakshmaiah, K. C.; Maksud, T. M.; Khatri, A.; Manjunath, K.; Kale, P.; Patel, R. et al. Detergent and alcohol free formulation of cabazitaxel: Safety and pharmacokinetics of escalating dose of cabazitaxel lipid suspension (CLS) in patients with advanced solid maliganancies, J. Clin. Oncol. 2016, 34, e14019–e14019.

    Article  Google Scholar 

  31. Chen, W. J.; Guo, M.; Wang, S. L. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system, Drug Dev. Ind. Pharm. 2016, 42, 1968–1976.

    Article  CAS  Google Scholar 

  32. Ren, T. Y.; Wang, Q.; Xu, Y.; Cong, L.; Gou, J. X.; Tao, X. G.; Zhang, Y.; He, H. B.; Yin, T.; Zhang, H. T. et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles, J. Control. Release 2018, 269, 423–438.

    Article  CAS  Google Scholar 

  33. Kommineni, N.; Saka, R.; Bulbake, U.; Khan, W. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer, Chem. Phys. Lipids 2019, 224, 104707.

    Article  CAS  Google Scholar 

  34. Zhao, Z.; Li, Y.; Liu, H.; Jain, A.; Patel, P. V.; Cheng, K. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer, Sci. Adv. 2020, 6, eabb0616.

    Article  CAS  Google Scholar 

  35. Han, X. X.; Chen, D.; Sun, J.; Zhou, J. S.; Li, D.; Gong, F. R.; Shen, Y. L. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time, J. Biomater. Sci. Polym. Ed. 2016, 27, 626–642.

    Article  CAS  Google Scholar 

  36. Zhuang, B.; Du, L.; Xu, H. X.; Xu, X. L.; Wang, C.; Fan, Y. F.; Cong, M. Y.; Yin, J. Q.; Li, H. X.; Guan, H. S. Self-assembled micelle loading cabazitaxel for therapy of lung cancer, Int. J. Pharm. 2016, 499, 146–155.

    Article  CAS  Google Scholar 

  37. Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S. Y.; Esfandyari-Manesh, M.; Abdolghaffari, A. H.; Daman, Z.; Atyabi, F.; Ghahremani, M. H.; Amini, M. et al. Peptide functionalized poly ethylene glycol-poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells, Mater. Sci. Eng. C 2017, 80, 301–312.

    Article  CAS  Google Scholar 

  38. He, B.; Tan, T.; Wang, H.; Hu, H. Y.; Wang, Z. W.; Wang, J.; Li, J.; Sun, K. X.; Zhang, Z. W.; Li, Y. P. Rational design of tumor microenvironment-activated micelles for programed targeting of breast cancer metastasis, Adv. Funct. Mater. 2018, 28, 1705622.

    Article  Google Scholar 

  39. Zhong, T.; He, B.; Cao, H. Q.; Tan, T.; Hu, H. Y.; Li, Y. P.; Zhang, Z. W. Treating breast cancer metastasis with cabazitaxel-loaded polymeric micelles, Acta Pharmacol. Sin. 2017, 38, 924–930.

    Article  CAS  Google Scholar 

  40. Aydin, O.; Youssef, I.; Durmaz, Y. Y.; Tiruchinapally, G.; ElSayed, M. E. H. Formulation of acid-sensitive micelles for delivery of cabazitaxel into prostate cancer cells, Mol. Pharmaceutics 2016, 13, 1413–1429.

    Article  CAS  Google Scholar 

  41. Sun, B. Y.; Chitgupi, U.; Li, C. N.; Federizon, J.; Zhang, C. J.; Ruszaj, D. M.; Razi, A.; Ortega, J.; Neelamegham, S.; Zhang, Y. M. et al. Surfactant-stripped cabazitaxel micelles stabilized by clotrimazole or mifepristone, Adv. Ther. 2020, 3, 1900161.

    Article  Google Scholar 

  42. Sun, B. Y.; Jing, H.; Mabrouk, M. T.; Zhang, Y. M.; Jin, H. L.; Lovell, J. F. A surfactant-stripped cabazitaxel micelle formulation optimized with accelerated storage stability, Pharm. Dev. Technol. 2020, 25, 1281–1288.

    Article  CAS  Google Scholar 

  43. Zhang, Y. M.; Song, W. T.; Geng, J. M.; Chitgupi, U.; Unsal, H.; Federizon, J.; Rzayev, J.; Sukumaran, D. K.; Alexandridis, P.; Lovell, J. F. Therapeutic surfactant-stripped frozen micelles, Nat. Commun. 2016, 7, 11649.

    Article  CAS  Google Scholar 

  44. Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy, Acta Biomater. 2020, 113, 501–511.

    Article  CAS  Google Scholar 

  45. Chen, Y. G.; Deng, Y. Y.; Zhu, C. Y.; Xiang, C. M. Anti prostate cancer therapy: Aptamer-functionalized, curcumin, and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles, Biomed. Pharmacother. 2020, 127, 110181.

    Article  CAS  Google Scholar 

  46. Fusser, M.; Øverbye, A.; Pandya, A. D.; Merch, Ý.; Borgos, S. E.; Kildal, W.; Snipstad, S.; Sulheim, E.; Fleten, K. G.; Askautrud, H. A. Cabazitaxel-loaded Poly (2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft, J. Controlled Release 2019, 293, 183–192.

    Article  CAS  Google Scholar 

  47. Sulheim, E.; Merch, Y.; Snipstad, S.; Borgos, S. E.; Miletic, H.; Bjerkvig, R.; De Lange Davies, C.; Aslund, A. K. O. Therapeutic effect of cabazitaxel and blood-brain barrier opening in a patient-derived glioblastoma model, Nanotheranostics 2019, 3, 103–112.

    Article  Google Scholar 

  48. Xue, P.; Liu, D.; Wang, J.; Zhang, N.; Zhou, J. H.; Li, L.; Guo, W. L.; Sun, M. C.; Han, X. F.; Wang, Y. J. Redox-sensitive citronellol-cabazitaxel conjugate: Maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine, Bioconjugate Chem. 2016, 27, 1360–1372.

    Article  CAS  Google Scholar 

  49. Bensaid, F.; Du Boullay, O. T.; Amgoune, A.; Pradel, C.; Reddy, L. H.; Didier, E.; Sablé, S.; Louit, G.; Bazile, D.; Bourissou, D. Y-shaped mPEG-PLA cabazitaxel conjugates: Well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles, Biomacromolecules 2013, 14, 1189–1198.

    Article  CAS  Google Scholar 

  50. Hoang, B.; Ernsting, M. J.; Tang, W. H. S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S. D. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer, Cancer Lett. 2017, 410, 169–179.

    Article  CAS  Google Scholar 

  51. Xie, B. B.; Wan, J. Q.; Chen, X. N.; Han, W. D.; Wang, H. X. Preclinical evaluation of a cabazitaxel prodrug using nanoparticle delivery for the treatment of taxane-resistant malignancies, Mol. Cancer Ther. 2020, 19, 822–834.

    Article  CAS  Google Scholar 

  52. Wan, J. Q.; Qiao, Y. T.; Chen, X. N.; Wu, J. P.; Zhou, L. Q.; Zhang, J.; Fang, S. J.; Wang, H. X. Structure-guided engineering of cytotoxic cabazitaxel for an adaptive nanoparticle formulation: Enhancing the drug safety and therapeutic efficacy, Adv. Funct. Mater. 2018, 28, 1804229.

    Article  Google Scholar 

  53. Sun, B. Y.; Straubinger, R. M.; Lovell, J. F. Current taxane formulations and emerging cabazitaxel delivery systems, Nano Res. 2018, 11, 5193–5218.

    Article  CAS  Google Scholar 

  54. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  CAS  Google Scholar 

  55. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C. H.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents, Nat. Mater. 2011, 10, 324–332.

    Article  CAS  Google Scholar 

  56. He, X. D.; Zhou, S. Q.; Huang, W. C.; Seffouh, A.; Mabrouk, M. T.; Morgan, M. T.; Ortega, J.; Abrams, S. I.; Lovell, J. F. A potent cancer vaccine adjuvant system for particleization of short, synthetic CD8+ T cell epitopes, ACS Nano 2021, 15, 4357–4371.

    Article  CAS  Google Scholar 

  57. Moukheiber, D.; Chitgupi, U.; Carter, K. A.; Luo, D. D.; Sun, B. Y.; Goel, S.; Ferreira, C. A.; Engle, J. W.; Wang, D. P.; Geng, J. M. et al. Surfactant-stripped pheophytin micelles for multimodal tumor imaging and photodynamic therapy, ACS Appl. Bio Mater. 2019, 2, 544–554.

    Article  CAS  Google Scholar 

  58. Luo, D. D.; Goel, S.; Liu, H. J.; Carter, K. A.; Jiang, D. W.; Geng, J. M.; Kutyreff, C. J.; Engle, J. W.; Huang, W. C.; Shao, S. et al. Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes, ACS Nano 2017, 11, 12482–12491.

    Article  CAS  Google Scholar 

  59. Kim, S.; Fujitsuka, M.; Majima, T. Photochemistry of singlet oxygen sensor green, J. Phys. Chem. B 2013, 117, 13985–13992.

    Article  CAS  Google Scholar 

  60. Luo, D. D.; Carter, K. A.; Geng, J. M.; He, X. D.; Lovell, J. F. Short drug-light intervals improve liposomal chemophototherapy in mice bearing MIA PaCa-2 Xenografts, Mol. Pharmaceutics 2018, 15, 3682–3689.

    Article  CAS  Google Scholar 

  61. Luo, D. D.; Carter, K. A.; Molins, E. A. G.; Straubinger, N. L.; Geng, J. M.; Shao, S.; Jusko, W. J.; Straubinger, R. M.; Lovell, J. F. Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals, J. Control. Release 2019, 297, 39–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (No. R01EB017270) and The National Natural Science Foundation of China (No. 82001752). The authors thank Dandan Luo for discussion and Donna M. Ruszaj for assistance with LC-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumiao Zhang, Shuai Shao or Jonathan F. Lovell.

Additional information

Conflict of interest

JFL and W.-C.H. hold interest in POP Biotechnologies. Other authors declare no conflict.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Ghosh, S., He, X. et al. Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel. Nano Res. 15, 4302–4309 (2022). https://doi.org/10.1007/s12274-022-4090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4090-3

Keywords

Navigation