Skip to main content
Log in

Localized surface plasmon resonance improves transdermal photodynamic therapy of hypertrophic scars

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is an emerging therapeutic strategy for hypertrophic scars (HS), which is heavily dependent on reactive oxygen species (ROS) generation. However, the unsatisfactory delivery and excitation of 5-aminolevulinic acid (ALA, a commercial photosensitizer in dermatology) result in an insufficient ROS generation, and thus limit the clinical application of PDT treating HS (HS-PDT). Consequently, sophisticated transdermal co-delivery nanoethosomes (named A/A-ES) with ALA and Au nanotriangles (AuNTs) in cores are prepared via an in-situ seed-mediated growth method, and then applied to improve HS-PDT through localized surface plasmon resonance (LSPR)-enhanced ROS generation. A/A-ES display a satisfactory performance in co-delivery in HS tissue with sufficient protoporphyrin IX production and LSPR effect in cytoplasm, which is beneficial for ALA excitation as well as ROS generation. In vitro/vivo studies reveal that A/A-ES significantly improve HS-PDT in promoting to fibroblast apoptosis and collagen remodeling through LSPR-enhanced ROS generation. Therefore, this study provides a feasible strategy that integrates transdermal delivery and LSPR to enable the beneficial effects of HS-PDT through boosting the delivery and excitation of ALA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, X. W.; Gu, S. C.; Huang, X.; Ren, J. Y.; Gu, Y. H.; Wei, C. J.; Lian, X.; Li, H. Z.; Gao, Y. S.; Jin, R. et al. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma 2020, 8, tkaa006.

    Article  Google Scholar 

  2. Kim, S. W. Management of keloid scars: Noninvasive and invasive treatments. Arch. Plast. Surg. 2021, 48, 149–157.

    Article  Google Scholar 

  3. Tosa, M.; Ogawa, R. Photodynamic therapy for keloids and hypertrophic scars: A review. Scars Burn. Heal. 2020, 6, 2059513120932059.

    Google Scholar 

  4. Nguyen, K.; Khachemoune, A. An update on topical photodynamic therapy for clinical dermatologists. J. Dermatol. Treat. 2019, 30, 732–744.

    Article  Google Scholar 

  5. Morton, C. A.; McKenna, K. E.; Rhodes, L. E. Guidelines for topical photodynamic therapy: Update. Brit. J. Dermatol. 2008, 159, 1245–1266.

    Article  CAS  Google Scholar 

  6. Polat, E.; Kang, K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021, 5, 584.

    Article  Google Scholar 

  7. Chen, J. M.; Fan, T. J.; Xie, Z. J.; Zeng, Q. Q.; Xue, P.; Zheng, T. T.; Chen, Y.; Luo, X. L.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020, 237, 119827.

    Article  CAS  Google Scholar 

  8. Chen, Y. S.; Zhang, Z.; Xin, Y.; Zhou, R.; Jiang, K.; Sun, X. Y.; He, D. N.; Song, J.; Zhang, Y. X. Synergistic transdermal delivery of nanoethosomes embedded in hyaluronic acid nanogels for enhancing photodynamic therapy. Nanoscale 2020, 12, 15435–15442.

    Article  CAS  Google Scholar 

  9. Zhang, Z.; Liu, Y.; Chen, Y. S.; Li, L. X.; Lan, P.; He, D. N.; Song, J.; Zhang, Y. X. Transdermal delivery of 5-aminolevulinic acid by nanoethosome gels for photodynamic therapy of hypertrophic scars. ACS Appl. Mater. Interfaces 2019, 11, 3704–3714.

    Article  CAS  Google Scholar 

  10. Zhang, Z.; Chen, Y. S.; Xu, H.; Wo, Y.; Zhang, Z.; Liu, Y.; Su, W. J.; Cui, D. X.; Zhang, Y. X. 5-Aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars. Nanoscale 2016, 8, 19270–19279.

    Article  CAS  Google Scholar 

  11. Chen, Y. S.; Zhang, Z.; Xin, Y.; Yu, Z. X.; Meng, X. X.; Zhang, Y.; He, D. N.; Zhang, Y. X. Functional transdermal nanoethosomes enhance photodynamic therapy of hypertrophic scars via self-generating oxygen. ACS Appl. Mater. Interfaces 2021, 13, 7955–7965.

    Article  CAS  Google Scholar 

  12. Zhong, X. Y.; Wang, X. W.; Li, J. X.; Hu, J.; Cheng, L.; Yang, X. L. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordin. Chem. Rev. 2021, 437, 213828.

    Article  CAS  Google Scholar 

  13. Du, B. J.; Liu, J. H.; Ding, G. Y.; Han, X.; Li, D.; Wang, E. K.; Wang, J. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res. 2017, 10, 2280–2295.

    Article  CAS  Google Scholar 

  14. An, J.; Hu, Y. G.; Cheng, K.; Li, C.; Hou, X. L.; Wang, G. L.; Zhang, X. S.; Liu, B.; Zhao, Y. D.; Zhang, M. Z. ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy. Biomaterials 2020, 234, 119761.

    Article  CAS  Google Scholar 

  15. Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

    Article  Google Scholar 

  16. Sun, J. Y.; Wang, J. P.; Hu, W.; Wang, Y. H.; Chou, T.; Zhang, Q.; Zhang, B. L.; Yu, Z. Q.; Yang, Y. M.; Ren, L. et al. Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Appl. Mater. Interfaces 2021, 13, 10778–10795.

    Article  CAS  Google Scholar 

  17. He, Y. C.; Yang, M. X.; Zhao, S. X.; Cong, C.; Li, X. W.; Cheng, X.; Yang, J. Y.; Gao, D. W. Regulatory mechanism of localized surface plasmon resonance based on gold nanoparticles-coated paclitaxel nanoliposomes and their antitumor efficacy. ACS Sustainable Chem. Eng. 2018, 6, 13543–13550.

    Article  CAS  Google Scholar 

  18. Kochuveedu, S. T.; Kim, D. H. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 2014, 6, 4966–4984.

    Article  CAS  Google Scholar 

  19. Macia, N.; Bresoli-Obach, R.; Nonell, S.; Heyne, B. Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 2019, 141, 684–692.

    Article  CAS  Google Scholar 

  20. Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 2018, 177, 149–160.

    Article  CAS  Google Scholar 

  21. Tabish, T. A.; Dey, P.; Mosca, S.; Salimi, M.; Palombo, F.; Matousek, P.; Stone, N. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Adv. Sci. 2020, 7, 1903441.

    Article  CAS  Google Scholar 

  22. Chen, H. L.; Liu, Z. M.; Jiang, O. Y.; Zhang, J. Y.; Huang, J.; You, X. R.; Liang, Z. Q.; Tao, W.; Wu, J. Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and cancer therapy. Giant 2021, 8, 100073.

    Article  CAS  Google Scholar 

  23. Seaberg, J.; Montazerian, H.; Hossen, M. N.; Bhattacharya, R.; Khademhosseini, A.; Mukherjee, P. Hybrid nanosystems for biomedical applications. ACS Nano 2021, 15, 2099–2142.

    Article  CAS  Google Scholar 

  24. Zhang, S. H.; Xin, P. K.; Ou, Q. M.; Hollett, G.; Gu, Z. P.; Wu, J. Poly (ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery. J. Mater. Chem. B 2018, 6, 6723–6730.

    Article  CAS  Google Scholar 

  25. Zhong, H. L.; Huang, J.; Wu, J.; Du, J. H. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 2022, 15, 787–804.

    Article  CAS  Google Scholar 

  26. Xian, C. H.; Gu, Z. P.; Liu, G. T.; Wu, J. Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. Chin. Chem. Lett. 2020, 31, 1612–1615.

    Article  CAS  Google Scholar 

  27. Zhang, S. H.; Hou, J. Y.; Yuan, Q. J.; Xin, P. K.; Cheng, H. T.; Gu, Z. P.; Wu, J. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem. Eng. J. 2020, 392, 123775.

    Article  CAS  Google Scholar 

  28. Wang, J.; Zhang, H.; Xiao, X.; Liang, D.; Liang, X. Y.; Mi, L.; Wang, J. F.; Liu, J. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomater. 2020, 107, 260–271.

    Article  CAS  Google Scholar 

  29. Zhang, Z.; Chen, Y. S.; Ding, J. Y.; Zhang, C. L.; Zhang, A. M.; He, D. N.; Zhang, Y. X. Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicles for in vitro transdermal synergistic photodynamic/photothermal therapy of hypertrophic scars. Nanoscale Res. Lett. 2017, 12, 622.

    Article  Google Scholar 

  30. Soto-Cruz, J.; Conejo-Valverde, P.; Saenz-Arce, G.; Dou, H. J.; Rojas-Carrillo, O. Biofabrication of gold nanotriangles using liposomes as a dual functional reductant and stabilizer. Langmuir 2021, 37, 3446–3455.

    Article  CAS  Google Scholar 

  31. Cardenas, M. T. P.; Kong, C. C.; He, J.; Litvin, S.; Meyerson, M. L.; Nie, Z. H. Immobilized seed-mediated growth of two-dimensional array of metallic nanocrystals with asymmetric shapes. ACS Nano 2018, 12, 1107–1119.

    Article  Google Scholar 

  32. Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Article  CAS  Google Scholar 

  33. Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H. et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials 2011, 32, 3447–3458.

    Article  CAS  Google Scholar 

  34. Gao, L.; Liu, R.; Gao, F. P.; Wang, Y. L.; Jiang, X. L.; Gao, X. Y. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014, 8, 7260–7271.

    Article  CAS  Google Scholar 

  35. Chen, W. W.; Zhang, S. H.; Yu, Y. Y.; Zhang, H. S.; He, Q. J. Structural-engineering rationales of gold nanoparticles for cancer theranostics. Adv. Mater. 2016, 28, 8567–8585.

    Article  CAS  Google Scholar 

  36. Kolygina, D. V.; Siek, M.; Borkowska, M.; Ahumada, G.; Barski, P.; Witt, D.; Jee, A. Y.; Miao, H.; Ahumada, J. C.; Granick, S. et al. Mixed-charge nanocarriers allow for selective targeting of mitochondria by otherwise nonselective dyes. ACS Nano 2021, 15, 11470–11490.

    Article  CAS  Google Scholar 

  37. Korntner, S.; Lehner, C.; Gehwolf, R.; Wagner, A.; Grütz, M.; Kunkel, N.; Tempfer, H.; Traweger, A. Limiting angiogenesis to modulate scar formation. Adv. Drug Deliv. Rev. 2019, 146, 170–189.

    Article  CAS  Google Scholar 

  38. Zhong, L. Z.; Li, M. R.; Fu, X. B. Biological approaches for hypertrophic scars. Int. Wound J. 2020, 17, 405–418.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by China Postdoctoral Science Foundation (Nos. 2017M620159 and 2019T120345), National Natural Science Foundation of China (Nos. 81772098 and 81801917), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (No. 20152227), Cross Research Project of Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (No. JYJC202009), Shanghai Health Industry Clinical Research Special Project (No. 20204Y0443), Shanghai Municipal Key Clinical Specialty (shslczdzk00901) and Scientific Research Foundation of Shanghai Municipal Commission of Health and Family Planning (No. 20154Y002). We would like to thank Editage (https://www.editage.cn) for English language editing and Dr. Liyu Jiang in Leica Microsytems (Shanghai) Trading Co., Ltd for supporting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyang Sun, Yixin Zhang or Zheng Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, Z., Meng, X. et al. Localized surface plasmon resonance improves transdermal photodynamic therapy of hypertrophic scars. Nano Res. 15, 4258–4265 (2022). https://doi.org/10.1007/s12274-021-4067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4067-7

Keywords

Navigation