Skip to main content
Log in

Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

La06Sr04Co02Fe08O3−δ (LSCF) is recognized as one of the most promising cathode materials for the highly-desired intermediate-temperature solid oxide fuel cell (IT-SOFC) technology. However, it is still challenged by polarization losses due to reduced operation temperatures. In this work, a series of Ba2+-doped La0.6−xBaxSr0.4Co0.2Fe0.8O3−δ (LBSCFx, x = 0.05, 0.10, 0.15, and 0.20) materials are successfully synthesized and their electrochemical performances are evaluated as a cathode for IT-SOFC technology. The study shows that, compared to the un-doped LSCF, the Ba2+-doped LBSCF possess higher electrical conductivities at 500–800 °C and display lower polarization resistances to oxygen adsorption/dissociation. As a result, the Ni-SDC|SDC|LBSCF0.20 cell (SDC = samarium-doped cerium, Sm0.2Ce0.8O1.9) delivers a high maximum power density of 0.704 W/cm2 at 750 °C, which is > 30% higher than the Ni-SDC|SDC|LSCF cell. This work reveals that Ba2+-doping is effective in enhancing oxygen catalytic activity of LSCF-based cathode materials, demonstrating a new and commercial-feasible strategy in developing high performance cathode materials for the IT-SOFC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, O.; Takeda, Y.; Kanno, R.; Noda, M. Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ion. 1987, 22, 241–246.

    Article  CAS  Google Scholar 

  2. Shin, J. F.; Xu, W.; Zanella, M.; Dawson, K.; Savvin, S. N.; Claridge, J. B.; Rosseinsky, M. J. Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells. Nat. Energy 2017, 2, 16214.

    Article  CAS  Google Scholar 

  3. Brandon, N. P.; Skinner, S.; Steele, B. C. H. Recent advances in materials for fuel cells. Ann. Rev. Mater. Res. 2003, 33, 183–213.

    Article  CAS  Google Scholar 

  4. Tarancón, A. Strategies for lowering solid oxide fuel cells operating temperature. Energies 2009, 2, 1130–1150.

    Article  Google Scholar 

  5. Seyed-Vakili, S. V.; Babaei, A.; Ataie, M.; Heshmati-Manesh, S.; Abdizadeh, H. Enhanced performance of La0.8Sr0.2MnO3 cathode for solid oxide fuel cells by co-infiltration of metal and ceramic precursors. J. Alloy Compd. 2018, 737, 433–441.

    Article  CAS  Google Scholar 

  6. Duan, N. Q.; Yang, J. J.; Gao, M. R.; Zhang, B. W.; Luo, J. L.; Du, Y. H.; Xu, M. H.; Jia, L. C.; Chi, B.; Li, J. Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3−δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells. Nano Energy 2020, 77, 105207.

    Article  CAS  Google Scholar 

  7. Chen, Y.; Bu, Y. F.; Zhao, B. T.; Zhang, Y. X.; Ding, D.; Hu, R. Z.; Wei, T.; Rainwater, B.; Ding, Y.; Chen, F. L. et al. A durable, highperformance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 2016, 26, 90–99.

    Article  CAS  Google Scholar 

  8. Kiebach, R.; Knöfel, C.; Bozza, F.; Klemensø, T. Chatzichristodoulou, C. Infiltration of ionic-, electronic- and mixed-conducting nano particles into La0.75Sr0.25MnO3-Y0.16Zr0.84O2 cathodes—A comparative study of performance enhancement and stability at different temperatures. J. Power Sources 2013, 228, 170–177.

    Article  CAS  Google Scholar 

  9. Lee, K. T.; Manthiram, A. Comparison of Ln0.6Sr0.4CoO3−δ (Ln = La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 2006, 153, A794–A798.

    Article  CAS  Google Scholar 

  10. Hong, T.; Brinkman, K.; Xia, C. R. Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite structured electrocatalyst. J. Power Sources 2016, 329, 281–289.

    Article  CAS  Google Scholar 

  11. Shao, Z. P.; Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173.

    Article  CAS  Google Scholar 

  12. Stevenson, J. W.; Armstrong, T. R.; Carneim, R. D.; Pederson, L. R.; Weber, W. J. Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J. Electrochem. Soc. 1996, 143, 2722–2729.

    Article  CAS  Google Scholar 

  13. Crumlin, E. J.; Ahn, S. J.; Lee, D.; Mutoro, E.; Biegalski, M. D.; Christen, H. M.; Shao-Horn, Y. Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3−δ perovskite thin films for solid oxide fuel cells. J. Electrochem. Soc. 2012, 159, F219–F225.

    Article  CAS  Google Scholar 

  14. Lee, D.; Lee, Y. L.; Grimaud, A.; Hong, W. T.; Biegalski, M. D.; Morgan, D.; Shao-Horn, Y. Enhanced oxygen surface exchange kinetics and stability on epitaxial La0.8Sr0.2CoO3−δ thin films by La0.8Sr0.2MnO3−δ decoration. J. Phys. Chem. C 2014, 118, 14326–14334.

    Article  CAS  Google Scholar 

  15. Tai, L. W.; Nasrallah, M. M.; Anderson, H. U.; Sparlin, D. M.; Sehlin, S. R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion. 1995, 76, 273–283.

    Article  CAS  Google Scholar 

  16. Gędziorowski, B., Świerczek, K., Molenda, J. La1−xBaxCo0.2Fe0.8O3−δ perovskites for application in intermediate temperature SOFC. Solid State Ion. 2012, 225, 437–442.

    Article  Google Scholar 

  17. Li, M.; Wang, Y.; Wang, Y. L.; Chen, F. L.; Xia, C. R. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 2014, 6, 11286–11294.

    Article  CAS  Google Scholar 

  18. He, B. B.; Zhang, K.; Ling, Y. H.; Xu, J. M.; Zhao, L. A surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ ultrathin membrane for highly efficient oxygen separation. J. Membrane Sci. 2014, 464, 55–60.

    Article  CAS  Google Scholar 

  19. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001, 34, 210–213.

    Article  CAS  Google Scholar 

  20. Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory: Los Alamos, 2000; pp 86–748.

    Google Scholar 

  21. Ko, M.-H.; Hwang, J.-H. Application of sonochemical processing to LSC(La0.6Sr0.4CoO3)/SDC(Sm2O3-doped CeO2) composite cathodes for solid oxide fuel cells involving CeO2-based electrolytes. Ceram. Int. 2016, 42, 11548–11553.

    Article  CAS  Google Scholar 

  22. Lou, X. Y.; Wang, S. Z.; Liu, Z.; Yang, L.; Liu, M. L. Improving La0.6Sr0.4Co0.2Fe0.8O3−δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3−δ coating. Solid State Ion. 2009, 180, 1285–1289.

    Article  CAS  Google Scholar 

  23. Zhou, F.; Liu, Y. H.; Zhao, X. F.; Tang, W. X.; Yang, S. B.; Zhong, S. H.; Wei, M. R. Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2018, 43, 18946–18954.

    Article  CAS  Google Scholar 

  24. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.

    Article  CAS  Google Scholar 

  25. Wang, J. L.; Yang, Z. B.; Yang, K. C.; Chen, Y.; Xiong, X. Y.; Peng, S. P. Chromium deposition and poisoning on Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode of solid oxide fuel cells. Electrochim. Acta 2018, 289, 503–515.

    Article  CAS  Google Scholar 

  26. Gao, J. Q.; Song, X. W.; Zhou, F.; An, S. L.; Tian, Y. W. Substituent effects of Ba2+ for Sm3+ on the structure and electrochemical performances of Sm0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J. Power Sources 2012, 218, 383–392.

    Article  CAS  Google Scholar 

  27. Li, H.; Wei, B.; Su, C. X.; Wang, C. Q.; Lü, Z. Novel cobalt-free layered perovskite LaBaFe2−xNbxO6−δ (x = 0–0.1) as cathode for solid oxide fuel cells. J. Power Sources 2020, 453, 227875.

    Article  CAS  Google Scholar 

  28. Shao, Z. P.; Xiong, G. X.; Tong, J. H.; Dong, H.; Yang, W. S. Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 2001, 25, 419–429.

    Article  CAS  Google Scholar 

  29. Sérgio, P.; Julião, B. A-site cation influences on performance, structure and conductivity of a lanthanide-based perovskite electrode for symmetrical solid oxide fuel cells. J. Power Sources 2020, 450, 227723.

    Article  Google Scholar 

  30. Teraoka, Y.; Zhang, H. M.; Okamoto, K.; Yamazoe, N. Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides. Mater. Res. Bull. 1988, 23, 51–58.

    Article  CAS  Google Scholar 

  31. Setevich, C. F.; Mogni, L. V.; Caneiro, A.; Prado, F. D. Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3−δ and Ce0.9Gd0.1O1.95. Int. J. Hydrogen Energy 2012, 37, 14895–14901.

    Article  CAS  Google Scholar 

  32. Montini, T.; Bevilacqua, M.; Fonda, E.; Casula, M. F.; Lee, S.; Tavagnacco, C.; Gorte, R. J.; Fornasiero, P. Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3−δ mixed oxides. Chem. Mater. 2009, 21, 1768–1774.

    Article  CAS  Google Scholar 

  33. Tai, L. W.; Nasrallah, M. M.; Anderson, H. U.; Sparlin, D. M.; Sehlin, S. R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 1995, 76, 259–271.

    Article  CAS  Google Scholar 

  34. Kozuka, H.; Ohbayashi, K.; Koumoto, K. Electronic conduction in La-based perovskite-type oxides. Sci. Technol. Adv. Mater. 2015, 16, 026001.

    Article  Google Scholar 

  35. Dasgupta, N.; Krishnamoorthy, R.; Jacob, K. T. Crystal structure, thermal expansion and electrical conductivity of Nd0.7Sr0.3Fe1−xCoxO3 (0 ≤ x ≤0.8). Mater. Sci. Eng. B 2002, 90, 278–286.

    Article  Google Scholar 

  36. Torrance, J. B.; Lacorre, P.; Nazzal, A. I.; Ansaldo, E. J.; Niedermayer, C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B Condens. Matter 1992, 45, 8209–8212.

    Article  CAS  Google Scholar 

  37. Ortiz-Vitoriano, N.; De Larramendi, I. R.; Cook, S. N.; Burriel, M.; Aguadero, A.; Kilner, J. A.; Rojo, T. The formation of performance enhancing pseudo-composites in the highly active La1−xCaxFe0.8Ni0.2O3 system for IT-SOFC application. Adv. Funct. Mater. 2013, 23, 5131–5139.

    Article  CAS  Google Scholar 

  38. Liu, Y. H.; Wang, F. Z.; Chi, B.; Pu, J.; Jian, L.; Jiang, S. P. A stability study of impregnated LSCF-GDC composite cathodes of solid oxide fuel cells. J. Alloys Compd. 2013, 578, 37–43.

    Article  CAS  Google Scholar 

  39. Zhang, Y.; Zhao, H. L.; Du, Z. H.; Świerczek, K.; Li, Y. Y. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell. Chem. Mater. 2019, 31, 3784–3793.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (No. 51974167). XRD, SEM and TEM examinations were assisted by the Center of Laboratory, Inner Monglia University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengli An or Hong Yang.

Additional information

Changkun Cai and Manyi Xie contributed equally to this work.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic Supplementary Material

12274_2021_3972_MOESM1_ESM.pdf

Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Xie, M., Xue, K. et al. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res. 15, 3264–3272 (2022). https://doi.org/10.1007/s12274-021-3972-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3972-0

Keywords

Navigation