Skip to main content
Log in

Device performance limit of monolayer SnSe2 MOSFET

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductors are attractive channels to shrink the scale of field-effect transistors (FETs), and among which the anisotropic one is more advantageous for a higher on-state current (Ion). Monolayer (ML) SnSe2, as an abundant, economic, nontoxic, and stable two-dimensional material, possesses an anisotropic electronic nature. Herein, we study the device performances of the ML SnSe2 metal-oxide-semiconductor FETs (MOSFETs) and deduce their performance limit to an ultrashort gate length (Lg) and ultralow supply voltage (Vdd) by using the ab initio quantum transport simulation. An ultrahigh Ion of 5,660 and 3,145 µA/µm is acquired for the n-type 10-nm-Lg ML SnSe2 MOSFET at Vdd = 0.7 V for high-performance (HP) and low-power (LP) applications, respectively. Specifically, until Lg scales down to 2 and 3 nm, the MOSFETs (at Vdd = 0.65 V) surpass Ion, intrinsic delay time (τ), and power-delay product (PDP) of the International Roadmap for Device and Systems (IRDS, 2020 version) for HP and LP devices for the year 2028. Moreover, the 5-nm-Lg ML SnSe2 MOSFET (at Vdd = 0.4 V) fulfills the IRDS HP device and the 7-nm-Lg MOSFET (at Vdd = 0.55 V) fulfills the IRDS LP device for the year 2034.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

    Article  CAS  Google Scholar 

  2. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296.

    Article  CAS  Google Scholar 

  3. Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

    Article  CAS  Google Scholar 

  4. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  5. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    Article  CAS  Google Scholar 

  6. Kong, L. G.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768–1783.

    Article  CAS  Google Scholar 

  7. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    Article  CAS  Google Scholar 

  8. Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

    Article  Google Scholar 

  9. Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K. G. A.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.

    Article  CAS  Google Scholar 

  10. Xu, K.; Chen, D. X.; Yang, F. Y.; Wang, Z. X.; Yin, L.; Wang, F.; Cheng, R. Q.; Liu, K. H.; Xiong, J.; Liu, Q. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 2017, 17, 1065–1070.

    Article  CAS  Google Scholar 

  11. Miao, J. S.; Zhang, S. M.; Cai, L.; Scherr, M.; Wang, C. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano 2015, 9, 9236–9243.

    Article  CAS  Google Scholar 

  12. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  CAS  Google Scholar 

  13. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Article  Google Scholar 

  14. Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

    Article  CAS  Google Scholar 

  15. Quhe, R.; Li, Q. H.; Zhang, Q. X.; Wang, Y. Y.; Zhang, H.; Li, J. Z.; Zhang, X. Y.; Chen, D. X.; Liu, K. H.; Ye, Y. et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys. Rev. Appl. 2018, 10, 024022.

    Article  CAS  Google Scholar 

  16. Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2011, 29, 2191–2201.

    Article  Google Scholar 

  17. Sun, X. T.; Song, Z. G.; Liu, S. Q.; Wang, Y. Y.; Li, Y. Y.; Wang, W. Z.; Lu, J. Sub-5 nm monolayer arsenene and antimonene transistors. ACS Appl. Mater. Interfaces 2018, 10, 22363–22371.

    Article  CAS  Google Scholar 

  18. Wang, Y. Y.; Fei, R. X.; Quhe, R.; Li, J. Z.; Zhang, H.; Zhang, X. Y.; Shi, B. W.; Xiao, L.; Song, Z. G.; Yang, J. B. et al. Many-body effect and device performance limit of monolayer InSe. ACS Appl. Mater. Interfaces 2018, 10, 23344–23352.

    Article  CAS  Google Scholar 

  19. Quhe, R.; Liu, J. C.; Wu, J. X.; Yang, J.; Wang, Y. Y.; Li, Q. H.; Li, T. R.; Guo, Y.; Yang, J. B.; Peng, H. L. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 2019, 11, 532–540.

    Article  CAS  Google Scholar 

  20. Yan, J. H.; Pang, H.; Xu, L.; Yang, J.; Quhe, R.; Zhang, X. Y.; Pan, Y. Y.; Shi, B. W.; Liu, S. Q.; Xu, L. Q. et al. Excellent device performance of sub-5-nm monolayer tellurene transistors. Adv. Electron. Mater. 2019, 5, 1900226.

    Article  Google Scholar 

  21. Zhou, W. H.; Zhang, S. L.; Guo, S. Y.; Wang, Y. Y.; Lu, J.; Ming, X.; Li, Z.; Qu, H. Z.; Zeng, H. B. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys. Rev. Appl. 2020, 13, 044066.

    Article  CAS  Google Scholar 

  22. Lv, S. Y.; Liu, X. Y.; Li, X. H.; Luo, W. F.; Xu, W. X.; Shi, Z. J.; Ren, Y. J.; Zhang, C. X.; Zhang, K. Electrochemical peeling few-layer SnSe2 for high-performance ultrafast photonics. ACS Appl. Mater. Interfaces 2020, 12, 43049–43057.

    Article  CAS  Google Scholar 

  23. Park, Y. W.; Jerng, S. K.; Jeon, J. H.; Roy, S. B.; Akbar, K.; Kim, J.; Sim, Y.; Seong, M. J.; Kim, J. H.; Lee, Z. et al. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation. 2D Mater. 2017, 4, 014006.

    Article  Google Scholar 

  24. Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

    Article  CAS  Google Scholar 

  25. Shafique, A.; Samad, A.; Shin, Y. H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: A first principles study. Phys. Chem. Chem. Phys. 2017, 19, 20677–20683.

    Article  CAS  Google Scholar 

  26. Li, H.; Xu, P. P.; Liang, J. K.; Liu, F. B.; Luo, J.; Lu, J. Ohmic contact in graphene/SnSe2 van der Waals heterostructures and its device performance from ab initio simulation. J. Mater. Sci. 2020, 55, 4321–4331.

    Article  CAS  Google Scholar 

  27. Guo, C. L.; Tian, Z.; Xiao, Y. J.; Mi, Q. X.; Xue, J. M. Field-effect transistors of high-mobility few-layer SnSe2. Appl. Phys. Lett. 2016, 109, 203104.

    Article  Google Scholar 

  28. Pei, T. F.; Bao, L. H.; Wang, G. C.; Ma, R. S.; Yang, H. F.; Li, J. J.; Gu, C. Z.; Pantelides, S.; Du, S. X.; Gao, H. J. Few-layer SnSe2 transistors with high on/off ratios. Appl. Phys. Lett. 2016, 108, 053506.

    Article  Google Scholar 

  29. Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.

    Article  Google Scholar 

  30. Xu, H.; Xing, J.; Huang, Y.; Ge, C.; Lu, J. H.; Han, X.; Du, J. Y.; Hao, H. Y.; Dong, J. J.; Liu, H. SnSe2 field-effect transistor with high on/off ratio and polarity-switchable photoconductivity. Nanoscale Res. Lett. 2019, 14, 17.

    Article  CAS  Google Scholar 

  31. Su, Y.; Ebrish, M. A.; Olson, E. J.; Koester, S. J. SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 2013, 103, 263104.

    Article  Google Scholar 

  32. IRDS. International Roadmap for Devices and Systems (IRDS™) [Online]. http://irds.ieee.org/editions (accessed June 3 2021).

  33. QuantumATK-Atomistic Simulation Software [Online]. https://www.synopsys.com/silicon/quantumatk.html (accessed June 3 2021).

  34. Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P. A.; Vej-Hansen, U. G. et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2020, 32, 015901.

    CAS  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 3865–3868.

    Article  Google Scholar 

  36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  37. Liang, Y. F.; Yang, L. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 2015, 114, 063001.

    Article  CAS  Google Scholar 

  38. Gao, S. Y.; Yang, L. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys. Rev. B 2017, 96, 155410.

    Article  Google Scholar 

  39. Kim, W. Y.; Kim, K. S. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green’s function method at the level of first principles theory. J. Comput. Chem. 2008, 29, 1073–1083.

    Article  CAS  Google Scholar 

  40. Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.

    Book  Google Scholar 

  41. Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, 2005.

    Book  Google Scholar 

  42. Huang, Y. C.; Ling, C. Y.; Liu, H.; Wang, S. F.; Geng, B. Y. Versatile electronic and magnetic properties of SnSe2 nanostructures induced by the strain. J. Phys. Chem. C 2014, 118, 9251–9260.

    Article  CAS  Google Scholar 

  43. Li, G. P.; Ding, G. Q.; Gao, G. Y. Thermoelectric properties of SnSe2 monolayer. J. Phys.: Condens. Matter 2017, 29, 015001.

    Google Scholar 

  44. Pan, Y. Y.; Dai, J. R.; Xu, L.; Yang, J.; Zhang, X. J.; Yan, J. H.; Li, J. Z.; Shi, B. W.; Liu, S. Q.; Hu, H. et al. Sub-5-nm monolayer silicane transistor: A first-principles quantum transport simulation. Phys. Rev. Appl. 2020, 14, 024016.

    Article  CAS  Google Scholar 

  45. Guo, Y.; Pan, F.; Zhao, G. Y.; Ren, Y. J.; Yao, B. B.; Li, H.; Lu, J. Sub-5 nm monolayer germanium selenide (GeSe) MOSFETs: Towards a high performance and stable device. Nanoscale 2020, 12, 15443–15452.

    Article  CAS  Google Scholar 

  46. Yang, J.; Quhe, R.; Li, Q. H.; Liu, S. Q.; Xu, L. Q.; Pan, Y. Y.; Zhang, H.; Zhang, X. Y.; Li, J. Z.; Yan, J. H. et al. Sub 10 nm bilayer Bi2O2Se transistors. Adv. Electron. Mater. 2019, 5, 1800720.

    Article  Google Scholar 

  47. Zhang, H.; Shi, B. W.; Xu, L.; Yan, J. F.; Zhao, W.; Zhang, Z. Y.; Zhang, Z. Y.; Lu, J. Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater. 2021, 3, 1560–1571.

    Article  CAS  Google Scholar 

  48. Ding, Y.; Liu, Y. S.; Yang, G. F.; Gu, Y.; Fan, Q. G.; Lu, N. Y.; Zhao, H. Q.; Yu, Y. Z.; Zhang, X. M.; Huo, X. X. et al. Highperformance ballistic quantum transport of sub-10 nm monolayer GeS field-effect transistors. ACS Appl. Electron. Mater. 2021, 3, 1151–1161.

    Article  CAS  Google Scholar 

  49. Wang, J.; Cai, Q.; Lei, J. M.; Yang, G. F.; Xue, J. J.; Chen, D. J.; Liu, B.; Lu, H.; Zhang, R.; Zheng, Y. D. Performance of monolayer blue phosphorene double-gate MOSFETs from the first principles. ACS Appl. Mater. Interfaces 2019, 11, 20956–20964.

    Article  CAS  Google Scholar 

  50. Guo, S. Y.; Wang, Y. Y.; Hu, X. M.; Zhang, S. L.; Qu, H. Z.; Zhou, W. H.; Wu, Z. H.; Liu, X. H.; Zeng, H. B. Ultrascaled double-gate monolayer SnS2 MOSFETs for high-performance and low-power applications. Phys. Rev. Appl. 2020, 14, 044031.

    Article  CAS  Google Scholar 

  51. Quhe, R.; Chen, J. X.; Lu, J. A sub-10 nm monolayer ReS2 transistor for low-power applications. J. Mater. Chem. C 2019, 7, 1604–1611.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Beijing Natural Science Foundation of China (No. 4212046), the National Natural Science Foundation of China (Nos. 11704008 and 91964101), the Support Plan of Yuyou Youth, and the fund of high-level characteristic research direction from North China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Li or Jing Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liang, J., Wang, Q. et al. Device performance limit of monolayer SnSe2 MOSFET. Nano Res. 15, 2522–2530 (2022). https://doi.org/10.1007/s12274-021-3785-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3785-1

Keywords

Navigation