Skip to main content
Log in

Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemodynamic therapy (CDT) is well acknowledged as potent reactive oxygen species (ROS)-mediated anticancer strategy. Especially, the study about labile iron pool (LIP) as endogenous ferrous catalyzer has paved the way for future CDT development. However, limited H2O2 expression, mild acidity, reduced glutathione (GSH) ablation of ROS, etc., all require employing alternate peroxo-complex to achieve enhanced CDT effect. As a non-Fenton-type substrate, artesunate (ART) has been utilized as a source of free radicals through decomposition of endoperoxide bridges catalyzed by ferrous ions, nonetheless, the non-tumor-specific delivery, inferior pharmacokinetics, and hydrophobic nature minimize the efficacy of ART in physiological systems. Herein, we devise a PPA nanoamplifier by conjugating ART with PEG-functionalized Pd@Pt nanoplates (PP NPs) to form ester linkage, ensuring specific intratumoral esterase-responsive ART release. Significantly, the PPA nanoamplifier combines the in situ decomposition of ART’s endoperoxide bridges by Fe2+ to superoxide anions (O2·−) and peroxidase (POD)-like enzymatic catalysis of endogenous H2O2 by PP to hydroxyl radicals (·OH), thus achieving amplified ROS-mediated tumor therapy. Besides, PPA displays GSH destruction potential, thereby protecting ROS from the cleavage by GSH oxidation. In addition, the strong absorption of PPA in near-infrared (NIR) region also endows PPA with photoacoustic property to realize imaging-guided CDT. In short, by taking advantages of the high enrichment and esterase- responsive drug release at tumor sites, PPA amplified ROS signals via dual pathways, killing tumor cells in vitro and inhibiting tumor growth in vivo, thereby realizing high-efficiency non-Fenton CDT. We believe our novel anti-tumor strategy based on PPA will broaden the future of ROS-mediated tumor-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

    Article  CAS  Google Scholar 

  2. Deák, M.; Horváth, G. V.; Davletova, S.; Török, K.; Sass, L.; Vass, I.; Barna, B.; Kirády, Z.; Dudits, D. Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat. Biotechnol. 1999, 17, 192–196.

    Article  Google Scholar 

  3. Shi, Z.; Zhang, Y.; Duoerkun, G.; Cao, W.; Liu, T.; Zhang, L. S.; Liu, J. S.; Li, M. Q.; Chen, Z. G. Fabrication of MoS2/BiOBr heterojunctions on carbon fibers as a weaveable photocatalyst for tetracycline hydrochloride degradation and Cr(VI) reduction under visible light. Environ. Sci. Nano 2020, 7, 2708–2722.

    Article  CAS  Google Scholar 

  4. Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 2017, 117, 6160–6224.

    Article  CAS  Google Scholar 

  5. Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 12624–12631.

    Article  CAS  Google Scholar 

  6. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

    Article  CAS  Google Scholar 

  7. Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Y.; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0)@MCM-41) for targeting experimental orthotopic glioma in rats. Sci. Rep. 2016, 6, 29247.

    Article  CAS  Google Scholar 

  8. Lei, S.; Chen, J. X.; Zeng, K.; Wang, M. Z.; Ge, X. W. Visual dual chemodynamic/photothermal therapeutic nanoplatform based on superoxide dismutase plus Prussian blue. Nano Res. 2019, 12, 1071–1082.

    Article  CAS  Google Scholar 

  9. Wu, W. C.; Yu, L. D.; Jiang, Q. Z.; Huo, M. F.; Lin, H.; Wang, L. Y.; Chen, Y.; Shi, J. L. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J. Am. Chem. Soc. 2019, 141, 11531–11539.

    Article  CAS  Google Scholar 

  10. Yin, S. Y.; Song, G. S.; Yang, Y.; Zhao, Y.; Wang, P.; Zhu, L. M.; Yin, X.; Zhang, X. B. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal-organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 2019, 29. 1901417.

    Article  Google Scholar 

  11. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

    Article  CAS  Google Scholar 

  12. Gao, S. T.; Jin, Y.; Ge, K.; Li, Z. H.; Liu, H. F.; Dai, X. Y.; Zhang, Y. H.; Chen, S. Z.; Liang, X. J.; Zhang, J. C. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 2019, 6, 1902137.

    Article  CAS  Google Scholar 

  13. Fu, S. Y.; Yang, R. H.; Zhang, L.; Liu, W. W.; Du, G. Y.; Cao, Y.; Xu, Z.G.; Cui, H. J.; Kang, Y. J.; Xue, P. Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials 2020, 257, 120279.

    Article  CAS  Google Scholar 

  14. Lin, L. S.; Wang, S.; Deng, H. Z.; Yang, W. J.; Rao, L.; Tian, R.; Liu, Y.; Yu, G. C.; Zhou, Z. J.; Song, J. B. et al. Endogenous labile iron pool-mediated free radical generation for cancer chemodynamic therapy. J. Am. Chem. Soc. 2020, 142, 15320–15330.

    Article  CAS  Google Scholar 

  15. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.

    Article  CAS  Google Scholar 

  16. Zheng, G.; Chen, J.; Stefflova, K.; Jarvi, M.; Li, H.; Wilson, B. C. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc. Natl. Acad. Sci. USA 2007, 104, 8989–8994.

    Article  CAS  Google Scholar 

  17. Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

    Article  Google Scholar 

  18. Fan, Z. X.; Jiang, B. L.; Zhu, Q. X.; Xiang, S. J.; Tu, L.; Yang, Y. F.; Zhao, Q. L.; Huang, D. D.; Han, J.; Su, G. H. et al. Tumor-specific endogenous FeII-activated, MRI-guided self-targeting gadolinium-coordinated theranostic nanoplatforms for amplification of ROS and enhanced chemodynamic chemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 14884–14904.

    Article  CAS  Google Scholar 

  19. Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.

    Article  CAS  Google Scholar 

  20. Chen, Z. G.; Kang, X. X.; Wu, Y. X.; Xiao, H. H.; Cai, X. Z.; Sheng, S. H.; Wang, X. F.; Chen, S. G. A mitochondria targeting artesunate prodrug-loaded nanoparticle exerting anticancer activity via iron-mediated generation of the reactive oxygen species. Chem. Commun. 2019, 55, 4781–4784.

    Article  CAS  Google Scholar 

  21. Wong, Y. K.; Xu, C. C.; Kalesh, K. A.; He, Y. K.; Lin, Q. S.; Wong, W. S. F.; Shen, H. M.; Wang, J. G. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev. 2017, 37, 1492–1517.

    Article  CAS  Google Scholar 

  22. Greenshields, A. L.; Shepherd, T. G.; Hoskin, D. W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog. 2017, 56, 75–93.

    Article  CAS  Google Scholar 

  23. Wei, S. P.; Liu, L. L.; Chen, Z. Y.; Yin, W. L.; Liu, Y. Z.; Ouyang, Q. Y.; Zeng, F. Y.; Nie, Y. J.; Chen, T. Artesunate inhibits the mevalonate pathway and promotes glioma cell senescence. J. Cell Mol. Med. 2020, 24, 276–284.

    Article  CAS  Google Scholar 

  24. Torti, S. V.; Torti, F. M. Ironing out cancer. Cancer Res. 2011, 71, 1511–1514.

    Article  CAS  Google Scholar 

  25. Chen, J.; Wang, X. B.; Zhang, Y.; Zhang, S. R.; Liu, H. L.; Zhang, J. X.; Feng, H.; Li, B.; Wu, X. Y.; Gao, Y. J. et al. A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. Biomaterials 2021, 266, 120457.

    Article  CAS  Google Scholar 

  26. Yiu, H. H. P.; Wright, P. A.; Botting, N. P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B Enzym. 2001, 15, 81–92.

    Article  CAS  Google Scholar 

  27. Kannan, R.; Kumar, K.; Sahal, D.; Kukreti, S.; Chauhan, V. S. Reaction of artemisinin with haemoglobin: Implications for antimalarial activity. Biochem. J. 2005, 385, 409–418.

    Article  CAS  Google Scholar 

  28. Amolegbe, S. A.; Ohmagari, H.; Wakata, K.; Takehira, H.; Ohtani, R.; Nakamura, M.; Yu, C. Z.; Hayami, S. Synthesis of mesoporous materials as nano-carriers for an antimalarial drug. J. Mater. Chem. B 2016, 4, 1040–1043.

    Article  CAS  Google Scholar 

  29. Hou, L.; Shan, X. N.; Hao, L. S.; Feng, Q. H.; Zhang, Z. Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater. 2017, 54, 307–320.

    Article  CAS  Google Scholar 

  30. Jin, M. H.; Shen, X. S.; Zhao, C. X.; Qin, X. L.; Liu, H. F.; Huang, L. F.; Qiu, Z. P.; Liu, Y. In vivo study of effects of artesunate nanoliposomes on human hepatocellular carcinoma xenografts in nude mice. Drug Deliv. 2013, 20, 127–133.

    Article  CAS  Google Scholar 

  31. Guo, Z. D.; Yang, L.; Chen, M.; Wen, X. J.; Liu, H. H.; Li, J. C.; Xu, D.; An, Y. Y.; Shi, C. R.; Li, J. D. et al. Molecular imaging of advanced atherosclerotic plaques with folate receptor-targeted 2D nanoprobes. Nano Res. 2020, 13, 173–182.

    Article  Google Scholar 

  32. Sun, D.; Pang, X.; Cheng, Y.; Ming, J.; Xiang, S. J.; Zhang, C.; Lv, P.; Chu, C. C.; Chen, X. L.; Liu, G. et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 2020, 14, 2063–2076.

    Article  CAS  Google Scholar 

  33. Ming, J.; Zhu, T. B.; Yang, W. H.; Shi, Y. R.; Huang, D. D.; Li, J. C.; Xiang, S. J.; Wang, J. J.; Chen, X. L.; Zheng, N. F. Pd@Pt-GOx/HA as a novel enzymatic cascade nanoreactor for high-efficiency starving-enhanced chemodynamic cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 51249–51262.

    Article  CAS  Google Scholar 

  34. Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.

    Article  CAS  Google Scholar 

  35. Qiu, N. S.; Liu, X. R.; Zhong, Y.; Zhou, Z. X.; Piao, Y.; Miao, L.; Zhang, Q. Z.; Tang, J. B.; Huang, L.; Shen, Y. Q. Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv. Mater. 2016, 28, 10613–10622.

    Article  CAS  Google Scholar 

  36. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  CAS  Google Scholar 

  37. Wei, J. P.; Li, J. C.; Sun, D.; Li, Q.; Ma, J. Y.; Chen, X. L.; Zhu, X.; Zheng, N. F. A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 2018, 28, 1706310.

    Article  Google Scholar 

  38. Larsen, E. M.; Johnson, R. J. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev. Res. 2019, 80, 33–47.

    Article  CAS  Google Scholar 

  39. Ding, C. Z.; Li, Z. B. A review of drug release mechanisms from nanocarrier systems. Mat. Sci. Eng. C 2017, 76, 1440–1453.

    Article  CAS  Google Scholar 

  40. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  41. Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  CAS  Google Scholar 

  42. Wan, X. Y.; Zhong, H.; Pan, W.; Li, Y. H.; Chen, Y. Y.; Li, N.; Tang, B. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 14134–14139.

    Article  CAS  Google Scholar 

  43. Zhu, M. T.; Nie, G. J.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. L. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 2013, 46, 622–631.

    Article  CAS  Google Scholar 

  44. Yin, J.; Kwon, Y.; Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J. H.; Yoon, J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 2014, 136, 5351–5358.

    Article  CAS  Google Scholar 

  45. Geng, P.; Yu, N.; Zhang, J. L.; Jin, Z. L.; Wen, M.; Jiang, Q.; Kang, L.; Peng, C.; Li, M. Q.; Zhang, H. J. et al. One responsive stone, three birds: Mn(III)-hemoporfin frameworks with glutathione-enhanced degradation, MRI, and sonodynamic therapy. Adv. Healthc. Mater. 2021, 10, 2001463.

    Article  CAS  Google Scholar 

  46. Zhang, A. M.; Zhang, Q.; Alfranca, G.; Pan, S. J.; Huang, Z. C.; Cheng, J.; Ma, Q.; Song, J.; Pan, Y. X.; Ni, J. et al. Gsh-triggered sequential catalysis for tumor imaging and eradication based on star-like au/pt enzyme carrier system. Nano Res. 2020, 13, 160–172.

    Article  CAS  Google Scholar 

  47. Zhang, Q. F.; Kuang, G. Z.; He, S. S.; Liu, S.; Lu, H. T.; Li, X. Y.; Zhou, D. F.; Huang, Y. B. Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. Nano Res. 2021, 14, 601–610.

    Article  CAS  Google Scholar 

  48. Visavadiya, N. P.; Patel, S. P.; VanRooyen, J. L.; Sullivan, P. G.; Rabchevsky, A. G. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016, 8, 59–67.

    Article  CAS  Google Scholar 

  49. Kryston, T. B.; Georgiev, A. B.; Pissis, P.; Georgakilas, A. G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011, 711, 193–201.

    Article  CAS  Google Scholar 

  50. Zheng, D. W.; Lei, Q.; Zhu, J. Y.; Fan, J. X.; Li, C. X.; Li, C.; Xu, Z. S.; Cheng, S. X.; Zhang, X. Z. Switching apoptosis to ferroptosis: Metal-organic network for high-efficiency anticancer therapy. Nano Lett. 2017, 17, 284–291.

    Article  CAS  Google Scholar 

  51. Miao, Z. H.; Chen, S.; Xu, C. Y.; Ma, Y.; Qian, H. S.; Xu, Y. J.; Chen, H. J.; Wang, X. W.; He, G.; Lu, Y. et al. PEGylated rhenium nanoclusters: A degradable metal photothermal nanoagent for cancer therapy. Chem. Sci. 2019, 10, 5435–5443.

    Article  CAS  Google Scholar 

  52. Zhang, C.; Bu, W. B.; Ni, D. L.; Zuo, C. J.; Chang, C.; Li, Q.; Zhang, L. L.; Wang, Z.; Shi, J. L. A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J. Am. Chem. Soc. 2016, 138, 8156–8164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075233 and 82073405), and Fundamental Research Funds for the Central Universities (Nos. 20720200020 and 20720190150). We acknowledge the support from Prof. Nanfeng Zheng from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenqing Hou or Xiaolan Chen.

Electronic Supplementary Material

12274_2021_3574_MOESM1_ESM.pdf

Endogenous Fe2+-activated ROS nanoamplifier for esteraseresponsive and photoacoustic imaging-monitored therapeutic improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Fan, Z., Ye, Z. et al. Endogenous Fe2+-activated ROS nanoamplifier for esterase-responsive and photoacoustic imaging-monitored therapeutic improvement. Nano Res. 15, 907–918 (2022). https://doi.org/10.1007/s12274-021-3574-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3574-x

Keywords

Navigation