Skip to main content
Log in

In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic surface of flexible multilayered nanofibers possesses special superiority for the surface-enhanced Raman scattering (SERS) sensing of molecules and microbial cells. However, the fabrication of flexible plasmonic nanofibers with high sensitivity and reproducibility is difficult. Herein, we report a smart strategy for fabricating flexible plasmonic fibers, in which compact and homogeneous gold nanoparticles (Au NPs) are in-situ grown on the high-curvature surface of multilayered fibers of electrospun polyvinylidene fluoride (PVDF). Firstly, the surface of PVDF fibers is changed electrically, and Au seeds are deposited on the surface of PVDF fibers using electrostatic driving force. Secondly, a stable AuI4 complex is formed employing coordination between I and AuCl4 ions, which could decrease the reduction potential of AuCl4 and restrain the self-nucleation, and then the reduction reaction of AuI4 is initiated by introducing PVDF@Au seeds to pull down the barrier of potential energy. Finally, in-situ growth of AuNPs is generated on the high-curvature surface of PVDF nanofibers, and large-scale hotspots are generated by adjacent AuNPs coupling in the three-dimensional (3D) space of multilayered fibers. Membrane of PVDF@Au nanofibers also realizes the sensitive detection of thiram molecules (low limit of detection of 0.1 nM) and good reproducibility (relative standard deviation of 10.6%). Meanwhile, due to the multilayered construction of PVDF@Au nanofibers, a valid SERS signal on 3D surface of bacteria could be generated. 3D distribution of hotspots on multilayered PVDF@Au nanofibers gives a clear advantage for SERS sensing of organic molecules and microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  CAS  Google Scholar 

  2. Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165–171.

    Article  CAS  Google Scholar 

  3. Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038.

    Article  CAS  Google Scholar 

  4. Chen, D. Z.; Song, Z. X.; Chen, F.; Huang, J.; Wei, J.; Zhao, Y. X. Simply controllable growth of single crystal plasmonic Au-Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing. RSC Adv. 2016, 6, 66056–66065.

    Article  CAS  Google Scholar 

  5. Severyukhina, A. N.; Parakhonskiy, B. V.; Prikhozhdenko, E. S.; Gorin, D. A.; Sukhorukov, G. B.; Möhwald, H.; Yashchenok, A. M. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules. ACS Appl. Mater. Interfaces 2015, 7, 15466–15473.

    Article  CAS  Google Scholar 

  6. Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.

    Article  CAS  Google Scholar 

  7. Chen, D. Z.; Ning, P.; Zhang, Y.; Jing, J. Y.; Zhang, M.; Zhang, L.; Huang, J.; He, X. H.; Fu, T.; Song, Z. X. et al. Ta@Ag porous array with high stability and biocompatibility for SERS sensing of bacteria. ACS Appl. Mater. Interfaces 2020, 12, 20138–20144.

    Article  CAS  Google Scholar 

  8. Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed. 2015, 54, 5132–5136.

    Article  CAS  Google Scholar 

  9. Lin, C. C.; Yang, Y. M.; Liao, P. H.; Chen, D. W.; Lin, H. P.; Chang, H. C. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosens. Bioelectron. 2014, 53, 519–527.

    Article  CAS  Google Scholar 

  10. Zhang, S. D.; Xiong, R.; Mahmoud, M. A.; Quigley, E. N.; Chang, H. B.; El-Sayed, M.; Tsukruk, V. V. Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS Appl. Mater. Interfaces 2018, 10, 18380–18389.

    Article  CAS  Google Scholar 

  11. Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 1733.

    Article  Google Scholar 

  12. Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468–4488.

    Article  CAS  Google Scholar 

  13. Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small 2012, 8, 648–653.

    Article  CAS  Google Scholar 

  14. Tang, W. Q.; Chase, D. B.; Rabolt, J. F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-a 3D SERS substrate. Anal. Chem. 2013, 85, 10702–10709.

    Article  CAS  Google Scholar 

  15. Chamuah, N.; Bhuyan, N.; Das, P. P.; Ojah, N.; Choudhary, A. J.; Medhi, T.; Nath, P. Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sens. Actuators B Chem. 2018, 273, 710–717.

    Article  CAS  Google Scholar 

  16. Zhao, X. F.; Li, C. H.; Li, Z.; Yu, J.; Pan, J.; Si, H. P.; Yang, C.; Jiang, S. Z.; Zhang, C.; Man, B. Y. In-situ electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics 2019, 8, 1719–1729.

    Article  CAS  Google Scholar 

  17. Qu, L. L.; Wang, N.; Xu, H.; Wang, W. P.; Liu, Y.; Kuo, L. D.; Yadav, T. P.; Wu, J. J.; Joyner, J.; Song, Y. H. et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering. Adv. Funct. Mater. 2017, 27, 1701714.

    Article  Google Scholar 

  18. Zhong, L. B.; Yin, J.; Zheng, Y. M.; Liu, Q.; Cheng, X. X.; Luo, F. H. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal. Chem. 2014, 86, 6262–6267.

    Article  CAS  Google Scholar 

  19. Yuan, Y. F.; Panwar, N.; Yap, S. H. K.; Wu, Q.; Zeng, S. W.; Xu, J. H.; Tjin, S. C.; Song, J.; Qu, J. L.; Yong, K. T. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord. Chem. Rev. 2017, 337, 1–33.

    Article  CAS  Google Scholar 

  20. Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25.

    Article  CAS  Google Scholar 

  21. Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82.

    Article  CAS  Google Scholar 

  22. Li, X. F.; Cao, M. H.; Zhang, H.; Zhou, L.; Cheng, S.; Yao, J. L.; Fan, L. J. Surface-enhanced Raman scattering-active substrates of electrospun polyvinyl alcohol/gold-silver nanofibers. J. Colloid Interface Sci. 2012, 382, 28–35.

    Article  CAS  Google Scholar 

  23. Sun, B.; Long, Y. Z.; Chen, Z. J.; Liu, S. L.; Zhang, H. D.; Zhang, J. C.; Han, W. P. Recent advances in flexible and stretchable electronic devices via electrospinning. J. Mater. Chem. C 2014, 2, 1209–1219.

    Article  CAS  Google Scholar 

  24. Lin, J. Y.; Wang, X. F.; Ding, B.; Yu, J. Y.; Sun, G.; Wang, M. R. Biomimicry via electrospinning. Crit. Rev. Solid State Mater. Sci. 2012, 37, 94–114.

    Article  CAS  Google Scholar 

  25. Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z. Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586–1594.

    Article  CAS  Google Scholar 

  26. Lee, C. H.; Tian, L. M.; Abbas, A.; Kattumenu, R.; Singamaneni, S. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology 2011, 22, 275311.

    Article  Google Scholar 

  27. Amarjargal, A.; Tijing, L. D.; Shon, H. K.; Park, C. H.; Kim, C. S. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high efficiency substrates for surface enhanced Raman scattering. Appl. Surf. Sci. 2014, 308, 396–401.

    Article  CAS  Google Scholar 

  28. He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002.

    Article  CAS  Google Scholar 

  29. Zhu, H.; Du, M. L.; Zhang, M.; Wang, P.; Bao, S. Y.; Zou, M. L.; Fu, Y. Q.; Yao, J. M. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: A highly efficient surface-enhanced Raman scattering substrates with high density of “hot” spots. Biosens. Bioelectron. 2014, 54, 91–101.

    Article  CAS  Google Scholar 

  30. Liu, X.; Ma, J.; Wu, X. M.; Lin, L. W.; Wang, X. H. Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals. ACS Nano 2017, 11, 1901–1910.

    Article  CAS  Google Scholar 

  31. Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J. Y.; Shin, H. J.; Kim, S. W.; Cho, J. H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778.

    Article  Google Scholar 

  32. Huang, T.; Yang, S. W.; He, P.; Sun, J.; Zhang, S.; Li, D. D.; Meng, Y.; Zhou, J. S.; Tang, H. X.; Liang, J. R. et al. Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732–30740.

    Article  CAS  Google Scholar 

  33. Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.

    Article  CAS  Google Scholar 

  34. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

    Article  CAS  Google Scholar 

  35. Shi, Y. F.; Lyu, Z. H.; Zhao, Ming.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    Article  CAS  Google Scholar 

  36. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

    Article  CAS  Google Scholar 

  37. Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzan, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34–43.

    Article  CAS  Google Scholar 

  38. Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706–19709.

    Article  CAS  Google Scholar 

  39. Chen, D. Z.; Zhu, X. D.; Huang, J.; Wang, G.; Zhao, Y.; Chen, F.; Wei, J.; Song, Z. X.; Zhao, Y. X. Polydopamine@gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples. Anal. Chem. 2018, 90, 9048–9054.

    Article  CAS  Google Scholar 

  40. Zhao, X. J.; Luo, X. J.; Bazuin, C. G.; Masson, J. F. In situ growth of AuNPs on glass nanofibers for SERS sensors. ACS Appl. Mater. Interfaces 2020, 12, 55349–55361.

    Article  CAS  Google Scholar 

  41. Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv Energy Mater. 2016, 6, 1601016.

    Article  Google Scholar 

  42. Yang, T.; Pan, H.; Tian G.; Zhang, B. B.; Xiong, D.; Gao, Y. Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

    Article  Google Scholar 

  43. Zhu, H.; Lussier, F.; Ducrot, C.; Bourque, M. J.; Spatz, J. P.; Cui, W. L.; Yu, L.; Peng, W.; Trudeau, L. É.; Bazuin, C. G. et al. Block copolymer brush layer-templated gold nanoparticles on nanofibers for surface-enhanced Raman scattering optophysiology. ACS Appl. Mater. Interfaces 2019, 11, 4373–4384.

    Article  CAS  Google Scholar 

  44. Huang, J.; Ma, D. Y.; Chen, F.; Bai, M.; Xu, K. W.; Zhao, Y. X. Ag nanoparticles decorated cactus-like Ag dendrites/Si nanoneedles as highly efficient 3D surface-enhanced Raman scattering substrates toward sensitive sensing. Anal. Chem. 2015, 87, 10527–10534.

    Article  CAS  Google Scholar 

  45. Liu, Z.; Yang, Z. B.; Peng, B.; Cao, C.; Zhang, C.; You, H. J.; Xiong, Q. H.; Li, Z. Y.; Fang, J. X. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431–2439.

    Article  CAS  Google Scholar 

  46. Zhang, R.; Hong, Y.; Reinhard, B. M.; Liu, P. H.; Wang, R.; Dal Negro, L. Plasmonic nanotrough networks for scalable bacterial Raman biosensing. ACS Appl. Mater. Interfaces 2018, 10, 27928–27935.

    Article  CAS  Google Scholar 

  47. Fang, T.; Shang, W. H.; Liu, C.; Xu, J. J.; Zhao, D. P.; Liu, Y. Y.; Ye, A. P. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers. Anal. Chem. 2019, 91, 9932–9939.

    Article  CAS  Google Scholar 

  48. Yang, D. T.; Zhou, H. B.; Haisch, C.; Niessner, R.; Ying, Y. B. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 2016, 146, 457–463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 81801122). Natural Science Basic Research Program of Shaanxi (No. 2020JQ-529). Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JK0658). The industry-University-Research collaborative innovation project of Keqiao Textile Industry Innovation Institute of Xi’an Polytechnic University (No. 19KQZD01). Xi’an Science and Technology Project (GXYD7.3), and Key R&D projects of Shaanxi (No. 2020GY-273). Project of China National Textile Industry Association (No. 2020047). The authors thank Yu Wang from Instrument Analysis Center of Xi’an Jiaotong University for helping us to complete the Raman detection. We also thank Senior Engineer Wei Wang from the State Key Laboratory for Mechanical Behavior of Materials for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang, Tao Fu or Xinhai He.

Electronic Supplementary Material

12274_2021_3530_MOESM1_ESM.pdf

In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhang, L., Ning, P. et al. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 14, 4885–4893 (2021). https://doi.org/10.1007/s12274-021-3530-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3530-9

Keywords

Navigation