Skip to main content
Log in

Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health. Non-contact, capacitive sensing electrodes prevent potential skin irritations, and are thus beneficial for long-term monitoring. Existing capacitive electrodes are either connected to a separate control circuit via external wires or have limited sensing capacitances, which leads to low signal qualities. This study demonstrates a stretchable capacitive sensing device with integrated electrodes and control electronics, with enhanced signal qualities. The electrodes and the control electronics are fabricated on a common fabric substrate for breathability and strain-limiting protection. The stretchable electrodes are based on an island-bridge design with a stretchability as high as ∼ 100%, and an area ratio as high as ∼ 80%. By using a dielectric calcium copper titanate (CCTO) composite as the adhesive layer, the electrode capacitance can be increased, yielding an enhanced signal-to-noise ratio (SNR) in the acquired biopotentials. This device offers a convenient and comfortable approach for long-term non-contact monitoring of biopotential signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugarolas, R.; Dieffenderfer, J.; Walker, K.; Wagner, A.; Sherman, B.; Roberts, D.; Bozkurt, A. Wearable wireless biophotonic and biopotential sensors for canine health monitoring. In SENSORS, 2014 IEEE, Valencia, Spain, 2014, pp 2203–2206.

  2. Samol, A.; Bischof, K.; Luani, B.; Pascut, D.; Wiemer, M.; Kaese, S. Single-lead ECG recordings including Einthoven and Wilson Leads by a smartwatch: A new era of patient directed early ECG differential diagnosis of cardiac diseases? Sensors 2019, 19, 4377.

    Article  Google Scholar 

  3. Ibaida, A.; Khalil, I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng. 2013, 60, 3322–3330.

    Article  Google Scholar 

  4. Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

    Article  CAS  Google Scholar 

  5. Dantas, H.; Warren, D. J.; Wendelken, S. M.; Davis, T. S.; Clark, G. A.; Mathews, V. J. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Trans. Biomed. Eng. 2019, 66, 3192–3203.

    Article  Google Scholar 

  6. Dias, N. S.; Ferreira, J. F.; Figueiredo, C. P.; Correia, J. H. A wireless system for biopotential acquisition: An approach for non-invasive brain-computer interface. In Proceedings of 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp 2709–2712.

  7. Lobodzinski, S. S.; Laks, M. M. New devices for very long-term ECG monitoring. Cardiol. J. 2012, 19, 210–214.

    Article  Google Scholar 

  8. Zehender, M.; Meinertz, T.; Keul, J.; Just, H. ECG variants and cardiac arrhythmias in athletes: Clinical relevance and prognostic importance. Am. Heart J. 1990, 119, 1378–1391.

    Article  CAS  Google Scholar 

  9. Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532.

    Article  Google Scholar 

  10. Liu, S. H.; Lin, C. B.; Chen, Y.; Chen, W. X.; Huang, T. S.; Hsu, C. Y. An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise. Sensors 2019, 19, 3108.

    Article  Google Scholar 

  11. Li, G. L.; Wang, S. Z.; Duan, Y. Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250–260.

    Article  CAS  Google Scholar 

  12. Griffith, M. E.; Portnoy, W. M.; Stotts, L. J.; Day, J. L. Improved capacitive electrocardiogram electrodes for burn applications. Med. Biol. Eng. Comput. 1979, 17, 641–646.

    Article  CAS  Google Scholar 

  13. Spinelli, E.; Haberman, M.; García, P.; Guerrero, F. A capacitive electrode with fast recovery feature. Physiol. Meas. 2012, 33, 1277–1288.

    Article  Google Scholar 

  14. Sun, Y.; Yu, X. B. Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sens. J. 2016, 16, 2832–2853.

    Article  Google Scholar 

  15. Portelli, A. J.; Nasuto, S. J. Design and development of non-contact bio-potential electrodes for pervasive health monitoring applications. Biosensors 2017, 7, 2.

    Article  Google Scholar 

  16. Sundaram, P. S. S.; Basker, N. H.; Natrayan, L. Smart clothes with bio-sensors for ECG monitoring. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 298–301.

    Google Scholar 

  17. Pehr, S.; Zollitsch, D.; Güttler, J.; Bock, T. Development of a non-contact ECG application unobtrusively embedded into a bed. In Proceedings of 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 2019, pp 1–6.

  18. Singh, R. K.; Sarkar, A.; Anoop, C. S. A health monitoring system using multiple non-contact ECG sensors for automotive drivers. In Proceedings of 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, China, 2016, pp 1–6.

  19. Das, P. S.; Park, J. Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control 2017, 33, 72–82.

    Article  Google Scholar 

  20. Jeong, J. W.; Kim, M. K.; Cheng, H.; Yeo, W. H.; Huang, X.; Liu, Y. H.; Zhang, Y. H.; Huang, Y. G.; Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 2014, 3, 642–648.

    Article  CAS  Google Scholar 

  21. Dong, W. T.; Cheng, X.; Xiong, T.; Wang, X. M. Stretchable biopotential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevices 2019, 21, 6.

    Article  Google Scholar 

  22. Das, P. S.; Kim, J. W.; Park, J. Y. Fashionable wrist band using highly conductive fabric for electrocardiogram signal monitoring. J. Ind. Textiles 2019, 49, 243–261.

    Article  Google Scholar 

  23. Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

    Article  CAS  Google Scholar 

  24. Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

    Article  CAS  Google Scholar 

  25. Zhang, M. C.; Wang, C. Y.; Liang, X. P.; Yin, Z.; Xia, K. L.; Wang, H. M.; Jian, M. Q.; Zhang, Y. Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193.

    Article  Google Scholar 

  26. Yuan, L.; Zhang, M.; Zhao, T. T.; Li, T. K.; Zhang, H.; Chen, L. L.; Zhang, J. H. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sens. Actuators A Phys. 2020, 315, 112192.

    Article  CAS  Google Scholar 

  27. Gong, M.; Wan, P. B.; Ma, D.; Zhong, M. J.; Liao, M. H.; Ye, J. J.; Shi, R.; Zhang, L. Q. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 2019, 29, 1902127.

    Article  Google Scholar 

  28. Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

    Article  Google Scholar 

  29. Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.

    Article  CAS  Google Scholar 

  30. Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate. Mater. Sci. Eng. C 2007, 27, 110–116.

    Article  CAS  Google Scholar 

  31. Bele, A.; Stiubianu, G.; Varganici, C. D.; Ignat, M.; Cazacu, M. Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 2015, 50, 6822–6832.

    Article  CAS  Google Scholar 

  32. Cherney, E. A. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectrics Electrical Insulat. 2005, 12, 1108–1115.

    Article  CAS  Google Scholar 

  33. Singh, D. P.; Mohapatra, Y. N.; Agrawal, D. C. Dielectric and leakage current properties of sol-gel derived calcium copper titanate (CCTO) thin films and CCTO/ZrO2 multilayers. Mater. Sci. Eng. B 2009, 157, 58–65.

    Article  CAS  Google Scholar 

  34. Duan, L.; Wang, G. L.; Zhang, Y. Y.; Zhang, Y. N.; Wei, Y. Y.; Wang, Z. F.; Zhang, M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym. Compos. 2018, 39, 691–697.

    Article  CAS  Google Scholar 

  35. Vlach, K.; Kijonka, J.; Jurek, F.; Vavra, P.; Zonca, P. Capacitive biopotential electrode with a ceramic dielectric layer. Sens. Actuators B Chem. 2017, 245, 988–995.

    Article  CAS  Google Scholar 

  36. Yang, Y.; Hu, H. J.; Chen, Z. Y.; Wang, Z. Y.; Jiang, L. M.; Lu, G. X.; Li, X. J.; Chen, R. M.; Jin, J.; Kang, H. C. et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 2020, 20, 4445–4453.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Yutaka Imai and Yota Komoriya for their support to this project and S. Xiang for constructive feedback on the manuscript preparation. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-18-2-5402. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) or the U.S. Government. All bio-experiments were conducted with the approval of the Institutional Review Board of the University of California, San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Gao, X., Nomoto, A. et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 14, 3248–3252 (2021). https://doi.org/10.1007/s12274-021-3458-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3458-0

Keywords

Navigation