Skip to main content
Log in

Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to their excellent optoelectronic properties, halide perovskite is very promising for photodetectors and other optoelectronic devices. Perovskite heterostructures are considered to be the key components for these devices. However, it is challenging to rationally synthesize those heterostructures. Here, we demonstrate that perovskite can be epitaxially grown on PbS by vapor transport, thereby creating an interesting CsPbBr3-PbS heterostructure. Remarkably, photodetectors based on CsPbBr3-PbS heterostructures exhibit visible to infrared broadband response with room temperature operation up to 2 μm. The room temperature detectivity higher than 1.0 × 109 Jones was obtained in the 1.8- to 2-μm range. Furthermore, the p-n heterojunction exhibits a clear rectifying characteristic and enables detector to operate at zero-bias. Our study provides fundamentally contributes to establish the epitaxial growth perovskite heterostructures and demonstrate a materials platform for efficient perovskite-based optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, H. X.; Tian, W.; Wang, X. F.; Deng, K. M.; Xiong, J.; Li, L. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 2020, 32, 1908108.

    Article  CAS  Google Scholar 

  2. Tong, J. H.; Song, Z. N.; Kim, D. H.; Chen, X. H.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G. et al. Carrier lifetimes of > 1 us in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479.

    Article  CAS  Google Scholar 

  3. Gong, X. W.; Huang, Z. R.; Sabatini, R.; Tan, C. S.; Bappi, G.; Walters, G.; Proppe, A.; Saidaminov, M. I.; Voznyy, O.; Kelley, S. O. et al. Contactless measurements of photocarrier transport properties in perovskite single crystals. Nat. Commun. 2019, 10, 1591.

    Article  CAS  Google Scholar 

  4. Chu, W. B.; Zheng, Q. J.; Prezhdo, O. V.; Zhao, J.; Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 2020, 6, eaaw7453.

    Article  CAS  Google Scholar 

  5. Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.

    Article  CAS  Google Scholar 

  6. Ono, L. K.; Liu, S.; Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 6676–6698.

    Article  CAS  Google Scholar 

  7. Chen, Z. L.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X. P.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 2019, 4, 1258–1259.

    Article  CAS  Google Scholar 

  8. Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

    Article  CAS  Google Scholar 

  9. Shi, E. Z.; Dou, L. T. Halide perovskite epitaxial heterostructures. Acc. Mater. Res. 2020, 1, 213–224.

    Article  CAS  Google Scholar 

  10. Lai, M. L.; Obliger, A.; Lu, D.; Kley, C. S.; Bischak, C. G.; Kong, Q.; Lei, T.; Dou, L. T.; Ginsberg, N. S.; Limmer, D. T. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl. Acad. Sci. USA. 2018, 115, 11929–11934.

    Article  CAS  Google Scholar 

  11. Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

    Article  CAS  Google Scholar 

  12. Fu, Q. D.; Wang, X. L.; Liu, F. C.; Dong, Y. X.; Liu, Z. R.; Zheng, S. J.; Chaturvedi, A.; Zhou, J. D.; Hu, P.; Zhu, Z. Q. et al. Ultrathin ruddlesden-popper perovskite heterojunction for sensitive photo-detection. Small 2019, 15, 1902890.

    Article  CAS  Google Scholar 

  13. Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct. 2020, 1, 2000009.

    Article  Google Scholar 

  14. Dou, L. T.; Lai, M. L.; Kley, C. S.; Yang, Y. M.; Bischak, C. G.; Zhang, D. D.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl. Acad. Sci. USA. 2017, 114, 7216–7221.

    Article  CAS  Google Scholar 

  15. Worku, M.; Tian, Y.; Zhou, C. K.; Lin, H. R.; Chaaban, M.; Xu, L. J.; He, Q. Q.; Beery, D.; Zhou, Y.; Lin, X. S. et al. Hollow metal halide perovskite nanocrystals with efficient blue emissions. Sci. Adv. 2020, 6, eaaz5961.

    Article  CAS  Google Scholar 

  16. Zhang, Q. G.; Wang, B.; Zheng, W. L.; Kong, L.; Wan, Q.; Zhang, C. Y.; Li, Z. C.; Cao, X. Y.; Liu, M. M.; Li, L. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11, 31.

    Article  CAS  Google Scholar 

  17. Zu, Y. Q.; Dai, J. F.; Li, L.; Yuan, F.; Chen, X.; Feng, Z. C.; Li, K.; Song, X. J.; Yun, F.; Yu, Y. et al. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J. Mater. Chem. A 2019, 7, 26116–26122.

    Article  CAS  Google Scholar 

  18. Zhou, H.; Yuan, S.; Wang, X.; Xu, T.; Wang, X.; Li, H.; Zheng, W.; Fan, P.; Li, Y.; Sun, L. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189–1195.

    Article  CAS  Google Scholar 

  19. Zeng, J. P.; Meng, C. F.; Li, X. M.; Wu, Y.; Liu, S. T.; Zhou, H.; Wang, H.; Zeng, H. B. Interfacial-tunneling-effect-enhanced CsPbBr3 photodetectors featuring high detectivity and stability. Adv. Funct. Mater. 2019, 29, 1904461.

    Article  CAS  Google Scholar 

  20. Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525–13532.

    Article  CAS  Google Scholar 

  21. Jiang, J.; Sun, X.; Chen, X. C.; Wang, B. W.; Chen, Z. Z.; Hu, Y.; Guo, Y. W.; Zhang, L. F.; Ma, Y.; Gao, L. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 2019, 10, 4145.

    Article  CAS  Google Scholar 

  22. Jin, B.; Zuo, N.; Hu, Z. Y.; Cui, W. J.; Wang, R. Y.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Y. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater. 2020, 30, 2006166.

    Article  CAS  Google Scholar 

  23. Jung, Y. K.; Butler, K. T.; Walsh, A. Halide perovskite heteroepitaxy: Bond formation and carrier confinement at the PbS–CsPbBr3 interface. J. Phys. Chem. C 2017, 121, 27351–27356.

    Article  CAS  Google Scholar 

  24. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  25. Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H. et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis–NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.

    Article  CAS  Google Scholar 

  26. Hu, X. L.; Zhou, H.; Jiang, Z. Y.; Wang, X.; Yuan, S. P.; Lan, J. Y.; Fu, Y. P.; Zhang, X. H.; Zheng, W. H.; Wang, X. X. et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano 2017, 11, 9869–9876.

    Article  CAS  Google Scholar 

  27. Zhang, H. J.; Liu, X.; Dong, J. P.; Yu, H.; Zhou, C.; Zhang, B. B.; Xu, Y. D.; Jie, W. Q. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 2017, 17, 6426–6431.

    Article  CAS  Google Scholar 

  28. He, Y. H.; Matei, L.; Jung, H. J.; McCall, K. M.; Chen, M.; Stoumpos, C. C.; Liu, Z. F.; Peters, J. A.; Chung, D. Y.; Wessels, B. W. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 2018, 9, 1609.

    Article  CAS  Google Scholar 

  29. Tan, L. L.; Liu, Q. B.; Ding, Y. F.; Lin, X. G.; Hu, W.; Cai, M. Q.; Zhou, H. Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition. Nano Res. 2020, 13, 557–563.

    Article  CAS  Google Scholar 

  30. Li, J. Z.; Wang, J.; Ma, J. Q.; Shen, H. Z.; Li, L.; Duan, X. F.; Li, D. H. Self-trapped state enabled filterless narrowband photo-detections in 2D layered perovskite single crystals. Nat. Commun. 2019, 10, 806.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

  32. Wen, Y.; Wang, Q. S.; Yin, L.; Liu, Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Liu, K. L.; Xu, K.; Huang, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051–8057.

    Article  CAS  Google Scholar 

  33. Pak, Y.; Mitra, S.; Alaal, N.; Xin, B.; Lopatin, S.; Almalawi, D.; Min, J. W.; Kim, H.; Kim, W.; Jung, G. Y. et al. Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantumdot decorated n-type 2D-MoS2-based photodetector. Appl. Phys. Lett. 2020, 116, 112102.

    Article  CAS  Google Scholar 

  34. Liu, J. X.; Zou, Y. S.; Huang, B.; Gu, Y.; Yang, Y.; Han, Z. Y.; Zhang, Y. Z.; Xu, X. B.; Zeng, H. B. Sensitively switchable visible/infrared multispectral detection and imaging based on a tandem perovskite device. Nanoscale 2020, 12, 20386–20395.

    Article  CAS  Google Scholar 

  35. Fang, Y. J.; Huang, J. S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 2015, 27, 2804–2810.

    Article  CAS  Google Scholar 

  36. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  37. Li, J. Z.; Wang, J.; Zhang, Y. J.; Wang, H. Z.; Lin, G. M.; Xiong, X.; Zhou, W. H.; Luo, H. M.; Li, D. H. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Mater. 2018, 5, 021001.

    Article  CAS  Google Scholar 

  38. Fang, Q. Y.; Shang, Q. Y.; Zhao, L. Y.; Wang, R.; Zhang, Z. P.; Yang, P. F.; Sui, X. Y.; Qiu, X. H.; Liu, X. F.; Zhang, Q. et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett. 2018, 9, 1655–1662.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Hunan Provincial Natural Science Foundation of China (No. 2019JJ40032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dehui Li or Hong Zhou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liang, L., Shen, H. et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res. 14, 3879–3885 (2021). https://doi.org/10.1007/s12274-021-3308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3308-0

Keywords

Navigation