Skip to main content
Log in

Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid (BSH) devices. Herein, a core-shell structure of the hollow mesoporous carbon spheres (HMCS) supported NiSe2 nanosheets (HMCS/NiSe2) is constructed through two-step reactions. The HMCS/NiSe2 shows a max specific capacity of 1,153.5 C·g−1 at the current density of 1 A·g−1, and can remain at 774.5 C·g−1 even at 40 A·g−1 (the retention rate as high as 67.1%) and then the HMCS/NiSe2 electrode can keep 80.5% specific capacity after 5,000 cycles at a current density of 10 A·g−1. Moreover, the density functional theory (DFT) calculation confirmed that the introduction HMCS into NiSe2 made adsorption/desorption of OH easier, which can achieve higher rate capability. The HMCS/NiSe2//6 M KOH//HMCS hybrid device has energy density of 47.15 Wh·kg−1 and power density of 801.8 W·kg−1. This work provides a feasible electrode material with a high rate and its preparation method for high energy density and power density energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

    Article  Google Scholar 

  2. Boudet, H. S. Public perceptions of and responses to new energy technologies. Nat. Energy 2019, 4, 446–455.

    Article  Google Scholar 

  3. Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

    Article  CAS  Google Scholar 

  4. Faisal, F.; Stumm, C.; Bertram, M.; Waidhas, F.; Lykhach, Y.; Cherevko, S.; Xiang, F. F.; Ammon, M.; Vorokhta, M.; Šmíd, B. et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nat. Mater. 2018, 17, 592–598.

    Article  CAS  Google Scholar 

  5. Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

    Article  CAS  Google Scholar 

  6. Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

    Article  CAS  Google Scholar 

  7. Miao, L.; Song, Z. Y.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Recent advances in carbon-based supercapacitors. Mater. Adv. 2020, 1, 945–966.

    Article  CAS  Google Scholar 

  8. Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189.

    Article  CAS  Google Scholar 

  9. Ji, F.; Shi, Y.; Li, M. Q.; Jiang, S. L.; Chen, G.; Liu, F.; Chen, Z. Scalable synthesis of uniform nanosized microporous carbon particles from rigid polymers for rapid ion and molecule adsorption. ACS Appl. Mater. Interfaces 2018, 10, 25429–25437.

    Article  CAS  Google Scholar 

  10. Pan, S. S.; Zhang, X.; Lu, W.; Yu, S. F. Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. J. Mater. Chem. A 2018, 6, 18687–18693.

    Article  CAS  Google Scholar 

  11. Song, Z. Y.; Duan, H.; Miao, L.; Ruhlmann, L.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 2020, 168, 499–507.

    Article  CAS  Google Scholar 

  12. Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

    Article  CAS  Google Scholar 

  13. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  14. Gan, Y.; Wang, C.; Chen, X.; Liang, P.; Wan, H. Z.; Liu, X.; Tan, Q. Y.; Wu, H.; Rao, H. et al. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 392, 123661.

    Article  CAS  Google Scholar 

  15. Li, J. H.; Shi, Q. W.; Shao, Y. L.; Hou, C. Y.; Li, Y. G; Zhang, Q. H.; Wang, H. Z. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater. 2019, 16, 212–219.

    Article  Google Scholar 

  16. Hu, H.; Guan, B. Y.; Lou, X. W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016, 1, 102–113.

    Article  CAS  Google Scholar 

  17. Bandyopadhyay, P.; Saeed, G.; Kim, N. H.; Lee, J. H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 354, 123357.

    Article  CAS  Google Scholar 

  18. Tan, Q. Y.; Chen, X.; Wan, H. Z.; Zhang, B.; Liu, X.; Li, L.; Wang, C.; Gan, Y.; Liang, P.; Wang, Y. et al. Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. J. Power Sources 2020, 448, 227403.

    Article  CAS  Google Scholar 

  19. Pan, S. S.; Liu, Z. Y.; Lu, W. Synthesis of naked plasmonic/magnetic Au/Fe3O4 nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology 2019, 30, 065605.

    Article  CAS  Google Scholar 

  20. Dan, S.; Wang, H. B.; Wang, Y.; Li, Y.; Liu, X.; Chen, X.; Peng, X. N.; Wang, X. N.; Ruterana, P.; Wang, H. Composition dependent activity of Fe1−xPtx, decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2017, 42, 20888–20894.

    Article  CAS  Google Scholar 

  21. Zhang, Z. A.; Shi, X. D.; Yang, X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim Acta 2016, 208, 238–243.

    Article  CAS  Google Scholar 

  22. Guan, S. D.; Fu, X. L.; Zhang, B.; Lei, M.; Peng, Z. J. Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery-supercapacitor hybrid devices. J. Mater. Chem. A 2020, 5, 3300–3310.

    Article  Google Scholar 

  23. Sahoo, R.; Lee, T. H.; Pham, D. T.; Luu, T. H. T.; Lee, Y. H. Fast-charging high-energy battery-supercapacitor hybrid: Anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure. ACS Nano 2019, 13, 10776–10786.

    Article  CAS  Google Scholar 

  24. Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. A. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 10, 1903277.

    Article  CAS  Google Scholar 

  25. Wang, C.; Song, Z. H.; Wan, H. Z.; Chen, X.; Tan, Q. Y.; Gan, Y.; Liang, P.; Zhang, J.; Wang, H. B.; Wang, Y. et al. Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 2020, 400, 125955.

    Article  CAS  Google Scholar 

  26. Shi, X.; Wang, H.; Kannan, P.; Ding, J. T.; Ji, S.; Liu, F. S.; Gai, H. J.; Wang, R. F. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 2019, 7, 3344–3352.

    Article  CAS  Google Scholar 

  27. Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946.

    Article  CAS  Google Scholar 

  28. Wang, S. L.; Li, W.; Xin, L. P.; Wu, M.; Long, Y.; Huang, H. T.; Lou, X. J. Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 2017, 330, 1334–1341.

    Article  CAS  Google Scholar 

  29. Lu, M.; Yuan, X. P.; Guan, X. H.; Wang, G. S. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 2017, 5, 3621–3627.

    Article  CAS  Google Scholar 

  30. Cheng, M.; Fan, H. S.; Xu, Y. Y.; Wang, R. M.; Zhang, X. X. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale 2017, 9, 14162–14171.

    Article  CAS  Google Scholar 

  31. Ma, Y.; Wu, D. L.; Wang, T.; Jia, D. Z. Nitrogen, phosphorus Co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl. Energy Mater. 2019, 3, 957–969.

    Article  CAS  Google Scholar 

  32. Fu, Y. S.; Zhou, Y.; Peng, Q.; Yu, C. Y.; Wu, Z.; Sun, J. W.; Zhu, J. W.; Wang, X. Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors. J. Power Sources 2018, 402, 43–52.

    Article  CAS  Google Scholar 

  33. Fu, X. M.; Li, Z. E.; Xu, L. M.; Liao, M.; Sun, H.; Xie, S. L.; Sun, X. M.; Wang, B. J.; Peng, H. S. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Sci. China Mater. 2019, 62, 955–964.

    Article  CAS  Google Scholar 

  34. Yan, J. J.; Miao, L.; Duan, H.; Zhu, D. Z.; Lv, Y. K.; Xiong, W.; Li, L. C.; Gan, L. H.; Liu, M. X. Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochim Acta 2020, 358, 136899.

    Article  CAS  Google Scholar 

  35. Miao, Y. D.; Zhang, X. P.; Zhan, J.; Sui, Y. W.; Qi, J. Q.; Wei, F. X.; Meng, Q. K.; He, Y. Z.; Ren, Y. J.; Zhan, Z. Z. et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2019, 1, 1901618.

    Google Scholar 

  36. Lima, N.; Baptista, A. C.; Faustino, B. M. M.; Taborda, S.; Marques, A.; Ferreira, I. Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 2020, 10, 7703.

    Article  CAS  Google Scholar 

  37. Du, J.; Liu, L.; Yu, Y. F.; Zhang, Y.; Lv, H. J.; Chen, A. B. Interpolation strategy for monodisperse hollow mesoporous carbon spheres in high performance supercapacitor. J. Power Sources 2019, 434, 226720.

    Article  CAS  Google Scholar 

  38. Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579–4586.

    Article  CAS  Google Scholar 

  39. Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

    Article  CAS  Google Scholar 

  40. Sun, H. Y.; Liu, S. W.; Lu, Q. F.; Zhong, H. Y. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor. Mater. Lett. 2014, 128, 136–139.

    Article  CAS  Google Scholar 

  41. Ming, F. W.; Liang, H. F.; Shi, H. H.; Xu, X.; Mei, G.; Wang, Z. C. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148–15155.

    Article  CAS  Google Scholar 

  42. Wang, H. B.; Li, Y.; Shu, D.; Chen, X.; Liu, X.; Wang, X. N.; Zhang, J.; Wang, H. CoPtx-loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 2016, 40, 280–1286.

    Article  CAS  Google Scholar 

  43. Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.

    Article  CAS  Google Scholar 

  44. Gu, Y.; Fan, L. Q.; Huang, J. L.; Geng, C. L.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Wu, J. H. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 2019, 425, 60–68.

    Article  CAS  Google Scholar 

  45. Zhou, Z. Y.; Miao, L.; Duan, H.; Wang, Z. W.; Lv, Y. K.; Xiong, W.; Zhu, D. Z.; Li, L. C.; Liu, M. X.; Gan, L. H. Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chin. Chem. Lett. 2020, 31, 1226–1230.

    Article  CAS  Google Scholar 

  46. Xu, J. S.; Sun, Y. D.; Lu, M. J.; Wang, L.; Zhang, J.; Liu, X. Y. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci.ChinaMater. 2019, 62, 699–710.

    CAS  Google Scholar 

  47. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014, 7, 1597–1614.

    Article  CAS  Google Scholar 

  48. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    Article  CAS  Google Scholar 

  49. Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.

    Article  CAS  Google Scholar 

  50. Bao, Q. L.; Wu, J. H.; Fan, L. Q.; Ge, J. H.; Dong, J.; Jia, J. B.; Zeng, J. L.; Lin, J. M. Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J. Energy Chem. 2017, 26, 1252–1259.

    Article  Google Scholar 

  51. Mohamed, S. G.; Hussain, I.; Shim, J. J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 2018, 10, 6620–6628.

    Article  CAS  Google Scholar 

  52. Li, R.; Wang, S. L.; Wang, J. P.; Huang, Z. C. Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 16434–16442.

    Article  CAS  Google Scholar 

  53. Qu, G. M.; Sun, P. X.; Xiang, G. T.; Yin, J. M.; Wei, Q.; Wang, C. G.; Xu, X. J. Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances. Appl. Mater. Today 2020, 20, 100713.

    Article  Google Scholar 

  54. Liu, S. D.; Yin, Y.; Shen, Y.; Hui, K. S.; Chun, Y. T.; Kim, J. M.; Hui, K. N.; Zhang, L. P.; Jun, S. C. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458.

    Article  CAS  Google Scholar 

  55. Hao, T. Z.; Liu, Y. Y.; Liu, G. L.; Peng, C. X.; Chen, B. J.; Feng, Y. T.; Ru, J. J.; Yang, J. H. Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance super-capacitors. Energy Storage Mater. 2019, 23, 225–232.

    Article  Google Scholar 

  56. Chen, W. Y.; Zhang, X. M.; Mo, L. E.; Zhang, Y. S.; Chen, S. H.; Zhang, X. X.; Hu, L. H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors. Chem. Eng. J. 2020, 388, 124109.

    Article  CAS  Google Scholar 

  57. Kuai, Y. Q.; Wang, T. L.; Liu, M. T.; Ma, H. W.; Zhang, C. J. Flowerlike Ni0.85Se nanosheets with enhanced performance toward hybrid supercapacitor. Electrochim. Acta 2019, 321, 134701.

    Article  CAS  Google Scholar 

  58. Wu, C.; Cai, J. J.; Zhu, Y.; Zhang, K. L. Nanoforest of hierarchical core/shell CuO@NiCo2O4 nanowire heterostructure arrays on nickel foam for high-performance supercapacitors. RSC Adv. 2016, 6, 63905–63914.

    Article  CAS  Google Scholar 

  59. Chen, B.; Tian, Y. F.; Yang, Z. X.; Ruan, Y. J.; Jiang, J. J.; Wang, C. D. Construction of (Ni, Cu)Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. ChemElectroChem 2017, 4, 3004–3010.

    Article  CAS  Google Scholar 

  60. Reddy, B. J.; Vickraman, P.; Justin, A. S. Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl. Surf. Sci. 2019, 483, 1142–1148.

    Article  CAS  Google Scholar 

  61. Tian, Y. F.; Ruan, Y. J.; Zhang, J. Y.; Yang, Z. X.; Jiang, J. J.; Wang, C. D. Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 2017, 250, 327–334.

    Article  CAS  Google Scholar 

  62. Peng, H.; Ma, G. F.; Sun, K. J.; Zhang, Z. G.; Li, J. D.; Zhou, X. Z.; Lei, Z. Q. A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J. Power Sources 2015, 297, 351–358.

    Article  CAS  Google Scholar 

  63. Lai, H. W.; Wu, Q.; Zhao, J.; Shang, L. M.; Li, H.; Che, R. C.; Lyu, Z. Y.; Xiong, J. F.; Yang, L. J.; Wang, X. Z. et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 2016, 9, 2053–2060.

    Article  CAS  Google Scholar 

  64. Lu, X. F.; Wu, D. J.; Li, R. Z.; Li, Q.; Ye, S. H.; Tong, Y. X.; Li, G. R. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4706–4713.

    Article  CAS  Google Scholar 

  65. Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 2017, 7, 1601362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52002122), the Science and Technology Department of Hubei Province (No. 2019AAA038) and the Wuhan Yellow Crane Talent Program (No. 2017-02). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717-ESTEEM3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houzhao Wan, Pei Liang, Hanbin Wang or Hao Wang.

Electronic Supplementary Material

12274_2020_3257_MOESM1_ESM.pdf

Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wan, H., Liang, P. et al. Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Res. 14, 2574–2583 (2021). https://doi.org/10.1007/s12274-020-3257-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3257-z

Keywords

Navigation