Skip to main content
Log in

In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There is ongoing research in freestanding single-atom thick elemental metal patches, including those suspended in a two-dimensional (2D) material, due to their utility in providing new structural and energetic insight into novel metallic 2D systems. Graphene pores have shown promise as support systems for suspending such patches. This study explores the potential of Sn atoms to form freestanding stanene and/or Sn patches in graphene pores. Sn atoms were deposited on graphene, where they formed novel single-atom thick 2D planar clusters/patches (or membranes) ranging from 1 to 8 atoms within the graphene pores. Patches of three or more atoms adopted either a star-like or close-packed structural configuration. Density functional theory (DFT) calculations were conducted to look at the cluster configurations and energetics (without the graphene matrix) and were found to deviate from experimental observations for 2D patches larger than five atoms. This was attributed to interfacial interactions between the graphene pore edges and Sn atoms. The presented findings help advance the development of single-atom thick 2D elemental metal membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochat, V.; Samanta, A.; Zhang, Y.; Bhowmick, S.; Manimunda, P.; Asif, S. A. S.; Stender, A. S.; Vajtai, R.; Singh, A. K.; Tiwary, C. S. et al. Atomically thin gallium layers from solid-melt exfoliation. Sci. Adv. 2018, 4, e1701373.

    Google Scholar 

  2. Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

    Google Scholar 

  3. Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    CAS  Google Scholar 

  4. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    CAS  Google Scholar 

  5. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    CAS  Google Scholar 

  6. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    CAS  Google Scholar 

  7. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  8. Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    CAS  Google Scholar 

  9. Komsa, H. P.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652–3656.

    CAS  Google Scholar 

  10. Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elias, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658–11666.

    CAS  Google Scholar 

  11. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Google Scholar 

  12. Yang, L. M.; Frauenheim, T.; Ganz, E. The new dimension of silver. Phys. Chem. Chem. Phys. 2015, 17, 19695–19699.

    CAS  Google Scholar 

  13. Yang, L. M.; Frauenheim, T.; Ganz, E. Properties of the free-standing two-dimensional copper monolayer. J. Nanomater. 2016, 2016, 8429510.

    Google Scholar 

  14. Saxena, S.; Chaudhary, R. P.; Shukla, S. Stanene: Atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 2016, 6, 31073.

    CAS  Google Scholar 

  15. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    CAS  Google Scholar 

  16. Deng, J. J.; Xia, B. Y.; Ma, X. C.; Chen, H. Q.; Shan, H.; Zhai, X. F.; Li, B.; Zhao, A. D.; Xu, Y.; Duan, W. H. et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 2018, 17, 1081–1086.

    CAS  Google Scholar 

  17. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Google Scholar 

  18. Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys. Condens. Matter 2015, 27, 253002.

    CAS  Google Scholar 

  19. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

    CAS  Google Scholar 

  20. Jiang, S. S.; Butler, S.; Bianco, E.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 2014, 5, 3389.

    Google Scholar 

  21. Yuhara, J.; Shimazu, H.; Ito, K.; Ohta, A.; Araidai, M.; Kurosawa, M.; Nakatake, M.; Le Lay, G. Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111). ACS Nano 2018, 12, 11632–11637.

    CAS  Google Scholar 

  22. Fortin-Deschênes, M.; Waller, O.; Mentes, T. O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P. L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970–4975.

    Google Scholar 

  23. Yuhara, J.; He, B. J.; Matsunami, N.; Nakatake, M.; Le Lay, G. Graphene’s latest cousin: Plumbene epitaxial growth on a “nano watercube”. Adv. Mater. 2019, 31, 1901017.

    Google Scholar 

  24. Zhao, J.; Deng, Q. M.; Bachmatiuk, A.; Sandeep, G.; Popov, A.; Eckert, J.; Rümmeli, M. H. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228–1232.

    CAS  Google Scholar 

  25. Quang, H. T.; Bachmatiuk, A.; Dianat, A.; Ortmann, F.; Zhao, J.; Warner, J. H.; Eckert, J.; Cunniberti, G.; Rümmeli, M. H. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 2015, 9, 11408–11413.

    CAS  Google Scholar 

  26. Yin, K. B.; Zhang, Y. Y.; Zhou, Y. L.; Sun, L. T.; Chisholm, M. F.; Pantelides, S. T.; Zhou, W. Unsupported single-atom-thick copper oxide monolayers. 2D Mater. 2016, 4, 011001.

    Google Scholar 

  27. Wang, X. L.; Wang, C. Y.; Chen, C. J.; Duan, H. C.; Du, K. Freestanding monatomic thick two-dimensional gold. Nano Lett. 2019, 19, 4560–4566.

    CAS  Google Scholar 

  28. Zhao, X. X.; Dan, J. D.; Chen, J. Y.; Ding, Z. J.; Zhou, W.; Loh, K. P.; Pennycook, S. J. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 2018, 30, 1707281.

    Google Scholar 

  29. Liu, Y. N.; Gao, N.; Zhuang, J. C.; Liu, C.; Wang, J. O.; Hao, W. C.; Dou, S. X.; Zhao, J. J.; Du, Y. Realization of strained stanene by interface engineering. J. Phys. Chem. Lett. 2019, 10, 1558–1565.

    CAS  Google Scholar 

  30. Xu, C. Z.; Chan, Y. H.; Chen, P.; Wang, X. X.; Flötotto, D.; Hlevyack, J. A.; Bian, G.; Mo, S. K.; Chou, M. Y.; Chiang, T. C. Gapped electronic structure of epitaxial stanene on InSb(111). Phys. Rev. B 2018, 97, 035122.

    CAS  Google Scholar 

  31. Liao, M. H.; Zang, Y. Y.; Guan, Z. Y.; Li, H. W.; Gong, Y.; Zhu, K. J.; Hu, X. P.; Zhang, D.; Xu, Y.; Wang, Y. Y. et al. Superconductivity in few-layer stanene. Nat. Phys. 2018, 14, 344–348.

    CAS  Google Scholar 

  32. Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Google Scholar 

  33. Liu, C. C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

    Google Scholar 

  34. Ta, H. Q.; Zhao, L.; Yin, W. J.; Pohl, D.; Rellinghaus, B.; Gemming, T.; Trzebicka, B.; Palisaitis, J.; Jing, G; Persson, P. O. Å. et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405–2411.

    CAS  Google Scholar 

  35. Robertson, A. W.; Montanari, B.; He, K.; Kim, J.; Allen, C. S.; Wu, Y. A.; Olivier, J.; Neethling, J.; Harrison, N.; Kirkland, A. I. et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468–1475.

    CAS  Google Scholar 

  36. Moreno, M. S.; Egerton, R. F.; Midgley, P. A. Differentiation of tin oxides using electron energy-loss spectroscopy. Phys. Rev. B 2004, 69, 233304.

    Google Scholar 

  37. Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

    CAS  Google Scholar 

  38. Rodríguez-Manzo, J. A.; Cretu, O.; Banhart, F. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 2010, 4, 3422–3428.

    Google Scholar 

  39. Zhao, J.; Deng, Q. M.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. USA 2014, 111, 15641–15646.

    CAS  Google Scholar 

  40. Maniraj, M.; Stadtmüller, B.; Jungkenn, D.; Düvel, M.; Emmerich, S.; Shi, W.; Stöckl, J.; Lyu, L.; Kollamana, J.; Wei, Z. et al. A case study for the formation of stanene on a metal surface. Commun. Phys. 2019, 2, 12.

    Google Scholar 

  41. Nevalaita, J.; Koskinen, P. Stability limits of elemental 2D metals in graphene pores. Nanoscale 2019, 11, 22019–22024.

    CAS  Google Scholar 

  42. Antikainen, S.; Koskinen, P. Growth of two-dimensional Au patches in graphene pores: A density-functional study. Comput. Mater. Sci. 2017, 131, 120–125.

    CAS  Google Scholar 

  43. Malola, S.; Häkkinen, H.; Koskinen, P. Gold in graphene: In-plane adsorption and diffusion. Appl. Phys. Lett. 2009, 94, 043106.

    Google Scholar 

  44. Pastewka, L.; Malola, S.; Moseler, M.; Koskinen, P. Li+ adsorption at prismatic graphite surfaces enhances interlayer cohesion. J. Power Sources 2013, 239, 321–325.

    CAS  Google Scholar 

  45. Dong, C. Z.; Zhu, W. P.; Zhao, S. Y.; Wang, P.; Wang, H. T.; Yang, W. Evolution of Pt clusters on graphene induced by electron irradiation. J. Appl. Mech. 2013, 80, 040904.

    Google Scholar 

  46. Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rümmeli, M. H. Stranski-Krastanov and Volmer-Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.

    CAS  Google Scholar 

  47. Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861–4866.

    Google Scholar 

  48. Zhao, L.; Ta, H. Q.; Dianat, A.; Soni, A.; Fediai, A.; Yin, W. J.; Gemming, T.; Trzebicka, B.; Cuniberti, G.; Liu, Z. F. et al. In situ electron driven carbon nanopillar-fullerene transformation through Cr atom mediation. Nano Lett. 2017, 17, 4725–4732.

    CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  51. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  52. Kresse, G; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  53. Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2009, 22, 022201.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11874044, 51676154, and 51672181) and the Czech Republic from ERDF “Institute of Environmental Technology-Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853). M. H. R. thanks the Sino-German Research Institute for its support (project: GZ 1400). Huy Q. Ta. thanks the Alexander von Humboldt foundation for its support through an Alexander von Humboldt Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Liu, Jin-Ho Choi or Mark H. Rummeli.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Ta, H.Q., Li, W. et al. In-situ observations of novel single-atom thick 2D tin membranes embedded in graphene. Nano Res. 14, 747–753 (2021). https://doi.org/10.1007/s12274-020-3108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3108-y

Keywords

Navigation