Skip to main content
Log in

ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) restricts chemotherapy efficacy due to P-glycoprotein (P-gp) mediated drug efflux, whereas current approaches to suppressing P-gp expression suffer from intrinsic challenges, such as low transfection, high toxicity and poor specificity. Here, hollow ferric-tannic acid complex nanocapsules (HFe-TA), which can be effectively degraded by the reaction with adenosine triphosphate (ATP), are synthesized for the delivery of glucose oxidase (GOx) and doxorubicin (DOX) for tumor treatment. The findings indicate that the intracellular ATP is significantly decreased due to the combined effect of HFe-TA degradation and GOx-mediated glucose consumption. Along with this ATP down-regulation, P-gp expression of tumor cells is suppressed remarkably, which in turn promotes the intracellular accumulation and anticancer efficacy of DOX. In addition, the production of OH by Fe ions released from HFe-TA is promoted by the by-products of the oxidation of glucose process by GOx. In consequence, HFe-TA nanocapsules loaded with DOX and GOx enable significant inhibition effect to tumors both in vitro and in vivo due to the synergistic effect of cascade reactions. This study has therefore provided an alternative therapeutic platform for effective tumor inhibition with the potential in overcoming intrinsic MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

    CAS  Google Scholar 

  2. Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018, 156, 217–237.

    CAS  Google Scholar 

  3. Zheng, Y. H.; You, X. R.; Chen, L.; Huang, J.; Wang, L. Y.; Wu, J.; Guan, S. Y. Biotherapeutic nanoparticles of poly(ferulic acid) delivering doxorubicin for cancer therapy. J. Biomed. Nanotechnol. 2019, 15, 1734–1743.

    CAS  Google Scholar 

  4. Zhang, X. Q.; Li, L. H.; Liu, Q.; Wang, Y. W.; Yang, J. G.; Qiu, T.; Zhou, G. Co-delivery of rose bengal and doxorubicin nanoparticles for combination photodynamic and chemo-therapy. J. Biomed. Nanotechnol. 2019, 15, 184–195.

    CAS  Google Scholar 

  5. Zhu, H. M.; Cao, G. D.; Qiang, C.; Fu, Y. K.; Wu, Y. L.; Li, X.; Han, G. R. Hollow ferric-tannic acid nanocapsules with sustained O2 and ROS induction for synergistic tumor therapy. Biomater. Sci. 2020, 8, 3844–3855.

    CAS  Google Scholar 

  6. Song, W.; Das, M.; Xu, Y.; Si, X.; Zhang, Y.; Tang, Z.; Chen, X. Leveraging biomaterials for cancer immunotherapy: Targeting pattern recognition receptors. Mater. Today Nano 2019, 5, 100029.

    Google Scholar 

  7. Xue, W. T.; Di, Z. H.; Zhao, Y.; Zhang, A. P.; Li, L. L. DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin. Chem. Lett. 2019, 30, 899–902.

    CAS  Google Scholar 

  8. Zhao, J. H.; Chen, J. W.; Ma, S. N.; Liu, Q. Q.; Huang, L. X.; Chen, X. N.; Lou, K. Y.; Wang, W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm. Sin. B 2018, 8, 320–338.

    Google Scholar 

  9. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    CAS  Google Scholar 

  10. Robey, R. W.; Pluchino, K. M.; Hall, M. D.; Fojo, A. T.; Bates, S. E.; Gottesman, M. M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464.

    CAS  Google Scholar 

  11. Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat Rev. Drug Discov. 2006, 5, 219–234.

    Google Scholar 

  12. Chen, C. J.; Chin, J. E.; Ueda, K.; Clark, D. P.; Pastan, I.; Gottesman, M. M.; Roninson, I. B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986, 47, 381–389.

    CAS  Google Scholar 

  13. Kirtane, A. R.; Kalscheuer, S. M.; Panyam, J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv. Drug Deliv. Rev. 2013, 65, 1731–1747.

    CAS  Google Scholar 

  14. Yang, H.; Shen, X.; Yan, J.; Xie, X. X.; Chen, Z. Y.; Li, T. T.; Li, S.; Qin, X.; Wu, C. H.; Liu, Y. Y. Charge-reversal-functionalized PLGA nanobubbles as theranostic agents for ultrasonic-imaging-guided combination therapy. Biomater. Sci. 2018, 6, 2426–2439.

    CAS  Google Scholar 

  15. Wang, C. L.; Guan, W. C.; Peng, J. L.; Chen, Y. T.; Xu, G. X.; Dou, H. J. Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater. 2020, 103, 247–258.

    CAS  Google Scholar 

  16. Zhou, Y. C.; Huang, F. T.; Yang, Y.; Wang, P. L.; Zhang, Z.; Tang, Y. N.; Shen, Y. Q.; Wang, K. Paraptosis-inducing nanomedicine overcomes cancer drug resistance for a potent cancer therapy. Small 2018, 14, 1702446.

    Google Scholar 

  17. Wang, T. T.; Wang, D. G.; Liu, J. P.; Feng, B.; Zhou, F. Y.; Zhang, H. W.; Zhou, L.; Yin, Q.; Zhang, Z. W.; Cao, Z. L. et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429–5436.

    CAS  Google Scholar 

  18. Yao, C.; Wang, P. Y.; Li, X. M.; Hu, X. Y.; Hou, J. L.; Wang, L. Y.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348.

    CAS  Google Scholar 

  19. Sosnik, A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing “generally recognized as safe” (GRAS) nanopharmaceuticals: A review. Adv. Drug Del. Rev. 2013, 65, 1828–1851.

    CAS  Google Scholar 

  20. Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

    Google Scholar 

  21. Wang, H. B.; Li, Y.; Zhang, M. Z.; Wu, D.; Shen, Y. Q.; Tang, G. P.; Ping, Y. Redox-activatable ATP-depleting micelles with dual modulation characteristics for multidrug-resistant cancer therapy. Adv. Healthc. Mater. 2017, 6, 1601293.

    Google Scholar 

  22. Wang, H.; Gao, Z.; Liu, X. Y.; Agarwal, P.; Zhao, S. T.; Conroy, D. W.; Ji, G.; Yu, J. H.; Jaroniec, C. P.; Liu, Z. G. et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun. 2018, 9, 562.

    Google Scholar 

  23. Leist, M.; Single, B.; Castoldi, A. F.; Kühnle, S.; Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J. Exp. Med. 1997, 185, 1481–1486.

    CAS  Google Scholar 

  24. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Google Scholar 

  25. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

    CAS  Google Scholar 

  26. Mo, R.; Jiang, T. Y.; Gu, Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem., Int. Ed. 2014, 126, 5925–5930.

    Google Scholar 

  27. Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

    CAS  Google Scholar 

  28. Song, X. R.; Li, S. H.; Dai, J. Y.; Song, L.; Huang, G. M.; Lin, R. H.; Li, J.; Liu, G.; Yang, H. H. Polyphenol-inspired facile construction of smart assemblies for ATP- and pH-responsive tumor MR/optical imaging and photothermal therapy. Small 2017, 13, 1603997.

    Google Scholar 

  29. Xu, C. F.; Liu, Y.; Shen, S.; Zhu, Y. H.; Wang, J. Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 2015, 51, 1–11.

    Google Scholar 

  30. Liu, Y.; Cao, Y. Y.; Zhang, W. H.; Bergmeier, S.; Qian, Y. R.; Akbar, H.; Colvin, R.; Ding, J.; Tong, L. Y.; Wu, S. Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 2012, 11, 1672–1682.

    CAS  Google Scholar 

  31. Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.

    CAS  Google Scholar 

  32. Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018, 12, 2858–2872.

    CAS  Google Scholar 

  33. Gao, G.; Jiang, Y. W.; Guo, Y. X.; Jia, H. R.; Cheng, X. T.; Deng, Y.; Yu, X. W.; Zhu, Y. X.; Guo, H. Y.; Sun, W. et al. Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy. Adv. Funct. Mater. 2020, 30, 1909391.

    CAS  Google Scholar 

  34. Hu, J. J.; Liu, M. D.; Gao, F.; Chen, Y.; Peng, S. Y.; Li, Z. H.; Cheng, H.; Zhang, X. Z. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. Biomaterials 2019, 217, 119303.

    CAS  Google Scholar 

  35. Sánchez-Laínez, J.; Zornoza, B.; Friebe, S.; Caro, J.; Cao, S.; Sabetghadam, A.; Seoane, B.; Gascon, J.; Kapteijn, F.; Le Guillouzer, C. et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J. Membrane Sci. 2016, 515, 45–53.

    Google Scholar 

  36. Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

    CAS  Google Scholar 

  37. Fang, C.; Yan, P. J.; Ren, Z. H.; Wang, Y. F.; Cai, X. J.; Li, X.; Han, G. R. Multifunctional MoO2-ICG nanoplatform for 808 nm-mediated synergetic photodynamic/photothermal therapy. Appl. Mater. Today 2019, 15, 472–481.

    Google Scholar 

  38. Yu, C. J.; Wu, S. M.; Tseng, W. L. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY conjugates: Application to adenosine triphosphate and pyrophosphate sensing. Anal. Chem. 2013, 85, 8559–8565.

    CAS  Google Scholar 

  39. Lu, Z. J.; Gao, J. Y.; Fang, C.; Zhou, Y.; Li, X.; Han, G. R. Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy. Adv. Sci., in press, DOI: https://doi.org/10.1002/advs.202001223.

  40. Kuang, Y. Y.; Balakrishnan, K.; Gandhi, V.; Peng, X. H. Hydrogen peroxide inducible DNA cross-linking agents: Targeted anticancer prodrugs. J. Am. Chem. Soc. 2011, 133, 19278–19281.

    CAS  Google Scholar 

  41. Verrax, J.; Dejeans, N.; Sid, B.; Glorieux, C.; Calderon, P. B. Intracellular ATP levels determine cell death fate of cancer cells exposed to both standard and redox chemotherapeutic agents. Biochem. Pharmacol. 2011, 82, 1540–1548.

    CAS  Google Scholar 

  42. Mao, Q. C.; Unadkat, J. D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport-an update. AAPS J. 2015, 17, 65–82.

    CAS  Google Scholar 

  43. Zheng, W. P.; Li, M. H.; Lin, Y. X.; Zhan, X. Encapsulation of verapamil and doxorubicin by MPEG-PLA to reverse drug resistance in ovarian cancer. Biomed. Pharmacother. 2018, 108, 565–573.

    CAS  Google Scholar 

  44. Gomes, L. C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598.

    CAS  Google Scholar 

  45. Weinberg, S. E.; Sena, L. A.; Chandel, N. S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015, 42, 406–417.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672247 and 51902288), Provincial Key research program of Zhejiang Province (No. 2020C04005), ‘111’ Program funded by Education Ministry of China and Sate Bureau of Foreign Experts Affairs (No. B16043), China Postdoctoral Science Foundation (No. 2018M640555), Fundamental Research Funds for the Central Universities and ZJU-Hangzhou Global Scientific and Technological Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Li or Yulian Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Cao, G., Fu, Y. et al. ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein. Nano Res. 14, 222–231 (2021). https://doi.org/10.1007/s12274-020-3071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3071-7

Keywords

Navigation