Skip to main content
Log in

Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Exploring alternative biomedical use of traditional drugs in different disease models is highly important as it can reduce the cost of drug development and overcome several critical issues of traditional chemodrugs such as low chemotherapeutic efficiency, severe side effect, and drug resistance. Disulfiram (DSF), a clinically approved alcohol-aversion drug, was recently demonstrated to feature tumor-growth suppression effect along with the co-administration of Cu2+ species, but direct Cu2+ administration mode might cause severe toxicity originating from low Cu2+ accumulation into the tumor and nonspecific Cu2+ distribution-induced cytotoxicity. Based on the intriguing drug-delivery performance of nanoscale metal-organic frameworks (MOFs), we herein construct HKUST nMOFs as the Cu2+ self-supplying nanocarriers for efficient delivery of the DSF drug. The mildly acidic condition of tumor microenvironment initially triggered the release of Cu ions from HKUST nMOFs, which further reacted with the encapsulated DSF to form toxic Cu(DDTC)2 (activation) for tumor chemotherapy. Especially, during the Cu(DDTC)2 complexation, Cu+ species were formed concomitantly, triggering the intratumoral nanocatalytic therapy for the generation of reactive oxygen species to synergistically destroying the tumor cells/tissue. As a result, synergetic tumor-responsive chemotherapy and nanocatalytic therapy are enabled by DSF@HKUST nanodrugs, as demonstrated by the dominant anticancer efficacy with satisfied biocompatibility both in vitro and in vivo. The present work offers a sophisticated strategy for tumor-responsive nontoxic-to-toxic therapeutic with high biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692–700.

    CAS  Google Scholar 

  2. Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017, 17, 928–937.

    CAS  Google Scholar 

  3. Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000–11012.

    CAS  Google Scholar 

  4. Wang, J.; Luo, C.; Shan, C. L.; You, Q. C.; Lu, J. Y.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J. L.; Fan, J. et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 2015, 7, 968–979.

    CAS  Google Scholar 

  5. Xing, R. R.; Zou, Q. L.; Yuan, C. Q.; Zhao, L. Y.; Chang, R.; Yan, X. H. Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics. Adv. Mater. 2019, 31, 1900822.

    Google Scholar 

  6. Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

    CAS  Google Scholar 

  7. Cao, H. Q.; Wang, Y. X.; He, X. Y.; Zhang, Z. W.; Yin, Q.; Chen, Y.; Yu, H. J.; Huang, Y. Z.; Chen, L. L.; Xu, M. H. et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol. Pharm. 2015, 12, 922–931.

    CAS  Google Scholar 

  8. Zheng, G. R.; Zhao, R. R.; Xu, A. X.; Shen, Z. C.; Chen, X.; Shao, J. W. Co-delivery of sorafenib and SiVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy. Eur. J. Pharm. Sci. 2018, 111, 492–502.

    CAS  Google Scholar 

  9. Liang, P. P.; Huang, X. Y.; Wang, Y.; Chen, D. P.; Ou, C. J.; Zhang, Q.; Shao, J. J.; Huang, W.; Dong, X. C. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy. ACS Nano 2018, 12, 11446–11457.

    CAS  Google Scholar 

  10. Tian, J. W.; Zhou, J. F.; Shen, Z.; Ding, L.; Yu, J. S.; Ju, H. X. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 2015, 6, 5969–5977.

    CAS  Google Scholar 

  11. Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40.

    CAS  Google Scholar 

  12. Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. An O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapy. Adv. Funct. Mater. 2017, 27, 1700626.

    Google Scholar 

  13. Qu, J.; Zhao, X.; Ma, P. X.; Guo, B. L. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017, 58, 168–180.

    CAS  Google Scholar 

  14. Tseng, S. J.; Kempson, I. M.; Huang, K. Y.; Li, H. J.; Fa, Y. C.; Ho, Y. C.; Liao, Z. X.; Yang, P. C. Targeting tumor microenvironment by bioreduction-activated nanoparticles for light-triggered virotherapy. ACS Nano 2018, 12, 9894–9902.

    CAS  Google Scholar 

  15. Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

    CAS  Google Scholar 

  16. Cvek, B. Nonprofit drugs as the salvation of the world’s healthcare systems: The case of antabuse (disulfiram). Drug Discov. Today 2012, 17, 409–412.

    Google Scholar 

  17. Duan, X. P.; Xiao, J. S.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Mao, S. R.; Li, Y. P. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 2013, 7, 5858–5869.

    CAS  Google Scholar 

  18. Tao, X. G.; Gou, J. X.; Zhang, Q. Y.; Tan, X. Y.; Ren, T. Y.; Yao, Q.; Tian, B.; Kou, L. F.; Zhang, L.; Tang, X. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater. Sci. 2018, 6, 1869–1881.

    CAS  Google Scholar 

  19. Song, W. T.; Tang, Z. H.; Shen, N.; Yu, H. Y.; Jia, Y. J.; Zhang, D. W.; Jiang, J.; He, C. L.; Tian, H. Y.; Chen, X. S. Combining disulfiram and poly(L-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J. Control. Release 2016, 231, 94–102.

    CAS  Google Scholar 

  20. Zhao, P. F.; Yin, W. M.; Wu, A. H.; Tang, Y. S.; Wang, J. Y.; Pan, Z. Z.; Lin, T. T.; Zhang, M.; Chen, B. F.; Duan, Y. F. et al. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy. Adv. Funct. Mater. 2017, 27, 1700403.

    Google Scholar 

  21. Bakthavatsalam, S.; Sleeper, M. L.; Dharani, A.; George, D. J.; Zhang, T.; Franz, K. J. Leveraging γ-glutamyl transferase to direct cytotoxicity of copper dithiocarbamates against prostate cancer cells. Angew. Chem., Int. Ed. 2018, 57, 12780–12784.

    CAS  Google Scholar 

  22. Xu, L. Y.; Xu, J. L.; Zhu, J. W.; Yao, Z. J.; Yu, N.; Deng, W.; Wang, Y.; Lin, B. L. Universal anticancer Cu(DTC)2 discriminates between thiols and Zinc (II) thiolates oxidatively. Angew. Chem., Int. Ed. 2019, 131, 6131–6134.

    Google Scholar 

  23. Loo, T. W.; Bartlett, M. C.; Clarke, D. M. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol. Pharm. 2004, 1, 426–433.

    CAS  Google Scholar 

  24. Yip, N. C.; Fombon, I. S.; Liu, P.; Brown, S.; Kannappan, V.; Armesilla, A. L.; Xu, B.; Cassidy, J.; Darling, J. L.; Wang, W. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer 2011, 104, 1564–1574.

    CAS  Google Scholar 

  25. Skrott, Z.; Mistrik, M.; Andersen, K. K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P. et al. Alcohol-abuse drug disulfiram targets cancer via P97 segregase adaptor NPL4. Nature 2017, 552, 194–199.

    CAS  Google Scholar 

  26. He, H. C.; Markoutsa, E.; Li, J.; Xu, P. S. Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly. Acta Biomater. 2018, 68, 113–124.

    CAS  Google Scholar 

  27. Grubman, A.; White, A. R. Copper as a key regulator of cell signalling pathways. Expert Rev. Mol. Med. 2014, 16, e11.

    Google Scholar 

  28. Lu, K. D.; Aung, T.; Guo, N. N.; Weichselbaum, R.; Lin, W. B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.

    Google Scholar 

  29. Zhu, W.; Xiang, G. L.; Shang, J.; Guo, J. M.; Motevalli, B.; Durfee, P.; Agola, J. O.; Coker, E. N.; Brinker, C. J. Versatile surface functionalization of metal-organic frameworks through direct metal coordination with a phenolic lipid enables diverse applications. Adv. Funct. Mater. 2018, 28, 1705274.

    Google Scholar 

  30. Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

    CAS  Google Scholar 

  31. Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651–661.

    CAS  Google Scholar 

  32. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

    CAS  Google Scholar 

  33. Xiao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; Xiao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 2018, 12, 1023–1032.

    CAS  Google Scholar 

  34. Xiao, J. S.; Chen, S. Y.; Yi, J.; Zhang, H. F.; Ameer, G. A. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 2017, 27, 1604872.

    Google Scholar 

  35. Sun, K. K.; Li, L.; Yu, X. L.; Liu, L.; Meng, Q. T.; Wang, F.; Zhang, R. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J. Colloid Interface Sci. 2017, 486, 128–135.

    CAS  Google Scholar 

  36. Wang, X. G.; Cheng, Q.; Yu, Y.; Zhang, X. Z. Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): A general and scalable approach. Angew. Chem., Int. Ed. 2018, 57, 7836–7840.

    CAS  Google Scholar 

  37. Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

    CAS  Google Scholar 

  38. Zhang, C. Y.; Yan, L.; Wang, X.; Dong, X. H.; Zhou, R. Y.; Gu, Z. J.; Zhao, Y. L. Tumor microenvironment-responsive Cu2(OH)PO4 nanocrystals for selective and controllable radiosentization via the X-ray-triggered fenton-like reaction. Nano Lett. 2019, 19, 1749–1757.

    CAS  Google Scholar 

  39. Lewis, D. J.; Deshmukh, P.; Tedstone, A. A.; Tuna, F.; O’Brien, P. On the interaction of copper(II) with disulfiram. Chem. Commun. 2014, 50, 13334–13337.

    CAS  Google Scholar 

  40. Wu, W. C.; Yu, L. D.; Jiang, Q. Z.; Huo, M. F.; Lin, H.; Wang, L. Y.; Chen, Y.; Shi, J. L. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J. Am. Chem. Soc. 2019, 141, 11531–11539.

    CAS  Google Scholar 

  41. Mao, D.; Wu, W. B.; Ji, S. D.; Chen, C.; Hu, F.; Kong, D. L.; Ding, D.; Liu, B. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 2017, 3, 991–1007.

    CAS  Google Scholar 

  42. Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400–6409.

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support from the National Key R&D Program of China (Nos. 2016YFA0203700 and 2016YFC1101201), the National Natural Science Foundation of China (Nos. 31771026, 81771984, and 51672303), Excellent Young Scientist Foundation of NSFC (No. 51722211), Program of Shanghai Subject Chief Scientist (No. 18XD1404300), and International Collaboration Project of Chinese Academy of Sciences (No. GJHZ2072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minfeng Huo, Yu Chen or Bailiang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, X., Huo, M. et al. Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy. Nano Res. 14, 205–211 (2021). https://doi.org/10.1007/s12274-020-3069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3069-1

Keywords

Navigation