Skip to main content
Log in

Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional metal-organic layers (MOLs) from alternatively connected benzene-tribenzoate ligands and Zr63-O)43-OH)4 or Hf63-O)43-OH)4 secondary building units can be prepared in gram scale via solvothermal synthesis. However, the reason why the monolayers did not pack to form thick crystals is unknown. Here we investigated the surface structure of the MOLs by a combination of sum-frequency generation spectroscopy, nanoscale infrared microscopy, atomic force microscopy, aberration-corrected transmission electron microscopy, and compositional analysis. We found a partial coverage of the monolayer surface by dangling tricarboxylate ligands, which prevent packing of the monolayers. This finding illustrates low-density surface modification as a strategy to prepare new two-dimensional materials with a high percentage of exposed surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

    Article  CAS  Google Scholar 

  2. Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461–1470.

    CAS  Google Scholar 

  3. Xu, J. H.; Wang, Z.; Yu, W. G; Sun, D.; Zhang, Q.; Tung, C. H.; Wang, W. G. Kagóme cobalt(II)-organic layers as robust scaffolds for highly efficient photocatalytic oxygen evolution. ChemSusChem 2016, 9, 1146–1152.

    Article  CAS  Google Scholar 

  4. Jian, M. P.; Liu, H. Y.; Williams, T.; Ma, J. S.; Wang, H. T.; Zhang, X. W. Temperature-induced oriented growth of large area, few-layer 2D metal-organic framework nanosheets. Chem. Commun. 2017, 53, 13161–13164.

    Article  CAS  Google Scholar 

  5. Cheng, H. J.; Liu, Y. F.; Hu, Y. H.; Ding, Y. B.; Lin, S. C.; Cao, W.; Wang, Q.; Wu, J. J. X.; Muhammad, F.; Zhao, X. Z. et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552–11559.

    Article  CAS  Google Scholar 

  6. Ang, H. X.; Hong, L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 28079–28088.

    Article  CAS  Google Scholar 

  7. Mukhopadhyay, A.; Maka, V. K.; Savitha, G.; Moorthy, J. N. Photochromic 2D metal-organic framework nanosheets (MONs): Design, synthesis, and functional MON-ormosil composite. Chem 2018, 4, 1059–1079.

    Article  CAS  Google Scholar 

  8. Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617.

    Article  CAS  Google Scholar 

  9. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    Article  CAS  Google Scholar 

  10. Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.

    Article  CAS  Google Scholar 

  11. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    Article  CAS  Google Scholar 

  12. Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J. Am. Chem. Soc. 2013, 135, 6157–6164.

    Article  CAS  Google Scholar 

  13. Li, Y. J.; Lin, L.; Tu, M.; Nian, P.; Howarth, A. J.; Farha, O. K.; Qiu, J. S.; Zhang, X. F. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 2018, 11, 1850–1860.

    Article  CAS  Google Scholar 

  14. He, L. H.; Duan, F. H.; Song, Y. P.; Guo, C. P.; Zhao, H.; Tian, J. Y.; Zhang, Z. H.; Liu, C. S.; Zhang, X. J.; Wang, P. Y. et al. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Mater. 2017, 4, 025098.

    Article  Google Scholar 

  15. Cao, L. Y.; Wang, T. T.; Wang, C. Synthetic strategies for constructing two-dimensional metal-organic layers (MOLs): A tutorial review. Chin. J. Chem. 2018, 36, 754–764.

    Article  CAS  Google Scholar 

  16. Shi, W. J.; Cao, L. Y.; Zhang, H.; Zhou, X.; An, B.; Lin, Z. K.; Dai, R. H.; Li, J. F.; Wang, C.; Lin, W. B. Surface modification of two-dimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem., Int. Ed. 2017, 56, 9704–9709.

    Article  CAS  Google Scholar 

  17. Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 2013, 135, 7438–7441.

    Article  CAS  Google Scholar 

  18. Nguyen, H. G T.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Nguyen, S. B. T. A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications. CrystEngComm 2012, 14, 4115–4118.

    Article  CAS  Google Scholar 

  19. Gassensmith, J. J.; Furukawa, H.; Smaldone, R. A.; Forgan, R. S.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J. Am. Chem. Soc. 2011, 133, 15312–15315.

    Article  CAS  Google Scholar 

  20. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

    Article  CAS  Google Scholar 

  21. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Article  Google Scholar 

  22. Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853.

    Article  CAS  Google Scholar 

  23. McGuire, C. V.; Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem. Commun. 2015, 51, 5199–5217.

    Article  CAS  Google Scholar 

  24. Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem., Int. Ed. 2010, 49, 5327–5330.

    Article  CAS  Google Scholar 

  25. Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324–5325.

    Article  CAS  Google Scholar 

  26. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468.

    Article  CAS  Google Scholar 

  27. Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

    Article  CAS  Google Scholar 

  28. He, Y. H.; Chen, G. Q.; Xu, M.; Liu, Y. Q.; Wang, Z. H. Vibrational dephasing of self-assembling monolayer on gold surface. J. Lumin. 2014, 152, 244–246.

    Article  CAS  Google Scholar 

  29. Wang, R. M.; Wang, Z. Y.; Xu, Y. W.; Dai, F. N.; Zhang, L. L.; Sun, D. F. Porous zirconium metal-organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. Inorg. Chem. 2014, 53, 7086–7088.

    Article  CAS  Google Scholar 

  30. Liang, W. B.; Babarao, R.; Murphy, M. J.; D’Alessandro, D. M. The first example of a zirconium-oxide based metal-organic framework constructed from monocarboxylate ligands. Dalton Trans. 2015, 44, 1516–1519.

    Article  CAS  Google Scholar 

  31. Tao, Z. R.; Wu, J. X.; Zhao, Y. J.; Xu, M.; Tang, W. Q.; Zhang, Q. H.; Gu, L.; Liu, D. H.; Gu, Z. Y. Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nat. Commun. 2019, 10, 2911.

    Article  Google Scholar 

  32. Sundaraganesan, N.; Ilakiamani, S.; Saleem, H.; Wojciechowski, P. M.; Michalska, D. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2995–3001.

    Article  CAS  Google Scholar 

  33. Wang, L.; Wang, H. M.; Wagner, M.; Yan, Y.; Jakob, D. S.; Xu, X. G. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 2017, 3, e1700255.

    Article  Google Scholar 

  34. Carter, J. A.; Wang, Z. H.; Dlott, D. D. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces. Acc. Chem. Res. 2009, 42, 1343–1351.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the Ministry of Science and Technology of China (No. 2016YFA0200702), the National Natural Science Foundation of China (No. 21671162 and No. 21721001), the XMU Training Program of Innovation and Entrepreneurship for Undergraduates and NFFTBS (No. J1310024). We thank Zhe Li and Rongkun Lin from Xiamen University for experimental support, and Bingjie Wang, Anna Carisson from Thermo Fischer Scientific for TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Liu, Y., Hu, X. et al. Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing. Nano Res. 13, 3151–3156 (2020). https://doi.org/10.1007/s12274-020-2986-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2986-3

Keywords

Navigation