Skip to main content
Log in

All-inorganic dual-phase halide perovskite nanorings

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the present work, we report the growth of all-inorganic perovskite nanorings with dual compositional phases of CsPbBr3 and CsPb2Br5 via a facile hot injection process. The self-coiling of CsPbBr3-CsPb2Br5 nanorings is driven by the axial stress generated on the outside surface of the as-synthesized nanobelts, which results from the lattice mismatch during the transformation of CsPbBr3 to CsPb2Br5. The tailored growth of nanorings could be achieved by adjusting the key experimental parameters such as reaction temperature, reaction time and stirring speed during the cooling process. The photoluminescence intensity and quantum yield of nanorings are higher than those of CsPbBr3 nanobelts, accompanied by a narrower full width at half maximum (FWHM), suggesting their high potential for constructing self-assembled optoelectronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, S. T.; Shang, Y. Y.; Cao, A. Y. Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Res. 2020, 13, 1191–1204.

    Google Scholar 

  2. Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res. 2019, 12, 1155–1166.

    CAS  Google Scholar 

  3. Xiao, Y. C.; Tian, Y. Y.; Sun, S. J.; Chen, C. L.; Wang, B. G. Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate. Nano Res. 2018, 11, 3864–3876.

    CAS  Google Scholar 

  4. Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534.

    CAS  Google Scholar 

  5. Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584–1589.

    CAS  Google Scholar 

  6. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    CAS  Google Scholar 

  7. Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 urn in solution-grown CH3NH3PM3 single crystals. Science 2015, 347, 967–970.

    CAS  Google Scholar 

  8. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electronhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    CAS  Google Scholar 

  9. Li, F.; Wang, H.; Kufer, D.; Liang, L. L.; Yu, W. L.; Alarousu, E.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Liu, C. X. et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 2017, 29, 1602432.

    Google Scholar 

  10. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    CAS  Google Scholar 

  11. Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Hussain, S.; Zhang, D. Q.; Poddar, S.; Wang, Z. Y.; Zhang, R. J.; Fan, Z. Y. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 2017, 17, 4951–4957.

    CAS  Google Scholar 

  12. Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.

    CAS  Google Scholar 

  13. Shahiduzzaman, M.; Yonezawa, K.; Yamamoto, K.; Ripolles, T. S.; Karakawa, M.; Kuwabara, T.; Takahashi, K.; Hayase, S.; Taima, T. Improved reproducibility and intercalation control of efficient planar inorganic perovskite solar cells by simple alternate vacuum deposition of PM2 and CsI. ACS Omega 2017, 2, 4464–4469.

    CAS  Google Scholar 

  14. Du, W. N.; Zhang, S.; Shi, J.; Chen, J.; Wu, Z. Y.; Mi, Y.; Liu, Z. X.; Li, Y. Z.; Sui, X. Y.; Wang, R. et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 2018, 5, 2051–2059.

    CAS  Google Scholar 

  15. Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

    CAS  Google Scholar 

  16. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

    CAS  Google Scholar 

  17. Liu, Z. X.; Mi, Y.; Guan, X. W.; Su, Z. C.; Liu, X. F.; Wu, T. Morphology-tailored halide perovskite platelets and wires: From synthesis, properties to optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800413.

    Google Scholar 

  18. Lin, C. H.; Kang, C. Y.; Wu, T. Z.; Tsai, C. L.; Sher, C. W.; Guan, X. W.; Lee, P. T.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Giant optical anisotropy of perovskite nanowire array films. Adv. Funct. Mater. 2020, 30, 1909275.

    CAS  Google Scholar 

  19. Fu, P. F.; Shan, Q. S.; Shang, Y. Q.; Song, J. Z.; Zeng, H. B.; Ning, Z. J.; Gong, J. K. Perovskite nanocrystals: Synthesis, properties and applications. Sci. Bull. 2017, 62, 369–380.

    CAS  Google Scholar 

  20. Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201–2208.

    CAS  Google Scholar 

  21. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    CAS  Google Scholar 

  22. Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861–4869.

    CAS  Google Scholar 

  23. Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

    CAS  Google Scholar 

  24. Kong, X. Y.; Wang, Z. L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003, 3, 1625–1631.

    CAS  Google Scholar 

  25. Xiang, Y. K.; Yong, D.; Yang, R. S.; Zhong, L. W. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.

    Google Scholar 

  26. Wang, H. T.; Wu, T. Formation of complex nanostructures driven by polar surfaces. J. Mater. Chem. 2011, 21, 15095–15099.

    CAS  Google Scholar 

  27. Cai, K.; Shi, J.; Liu, L. N.; Qin, Q. H. Fabrication of an ideal nanoring from a black phosphorus nanoribbon upon movable bundling carbon nanotubes. Nanotechnology 2017, 28, 385603.

    Google Scholar 

  28. Zhu, X. H.; Evans, P. R.; Byrne, D.; Schilling, A.; Douglas, C.; Pollard, R. J.; Bowman, R. M.; Gregg, J. M.; Morrison, F. D.; Scott, J. F. Perovskite lead zirconium titanate nanorings: Towards nanoscale ferroelectric “solenoids”? Appl. Phys. Lett. 2006, 89, 122913.

    Google Scholar 

  29. Yang, W. Y.; Cheng, X. M.; Wang, H. T.; Xie, Z. P.; Xing, F.; An, L. N. Bundled silicon nitride nanorings. Cryst. Growth Des. 2008, 8, 3921–3923.

    CAS  Google Scholar 

  30. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    CAS  Google Scholar 

  31. Acharyya, P.; Pal, P.; Samanta, P. K.; Sarkar, A.; Pati, S. K.; Biswas, K. Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 2019, 11, 4001–4007.

    CAS  Google Scholar 

  32. Chen, F.; Xu, C. X.; Xu, Q. Y.; Zhu, Y. Z.; Qin, F. F.; Zhang, W.; Zhu, Z.; Liu, W.; Shi, Z. L. Self-assembled growth of ultrastable CH3NH3PbBr3 perovskite milliwires for photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 25763–25769.

    CAS  Google Scholar 

  33. Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.

    CAS  Google Scholar 

  34. Pymatgen Development Team. Pymatgen (Python Materials Genomics) [Online]. https://pymatgen.org/pymatgen.analysis.substrate_analyzer.html?highlight=substrate#module-pymatgen.analysis.substrate_analyzer (accessed 5 March 2020).

  35. Zur, A.; McGill, T. C. Lattice match: An application to heteroepitaxy. J. Appl. Phys. 1984, 55, 378–386.

    CAS  Google Scholar 

  36. Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319.

    CAS  Google Scholar 

  37. Kim, S. W.; Lee, M.; Jang, H.; Lee, H. J.; Ko, D. H. Effect of thermal annealing on the strain and microstructures of in-situ phosphorus-doped Si1-xCx films grown on blanket and patterned silicon wafers. J. Alloys Compd. 2019, 790, 799–808.

    CAS  Google Scholar 

  38. Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

    Google Scholar 

  39. Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A. M.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F. et al. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem 2017, 10, 3746–3749.

    CAS  Google Scholar 

  40. Coduri, M.; Strobel, T. A.; Szafrański, M.; Katrusiak, A.; Mahata, A.; Cova, F.; Bonomi, S.; Mosconi, E.; De De Angelis, F.; Malavasi, L. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: Mechanistic insights through the application of pressure. J. Phys. Chem. Lett. 2019, 10, 7398–7405.

    CAS  Google Scholar 

  41. Tang, X. S.; Hu, Z. P.; Yuan, W.; Hu, W.; Shao, H. B.; Han, D. J.; Zheng, J. F.; Hao, J. Y.; Zang, Z. G.; Du, J. et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 2017, 5, 1600788.

    Google Scholar 

  42. Shen, W.; Ruan, L. F.; Shen, Z. T.; Deng, Z. T. Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 2018, 54, 2804–2807.

    CAS  Google Scholar 

  43. Li, G. P.; Wang, H.; Zhu, Z. F.; Chang, Y. J.; Zhang, T.; Song, Z. H.; Jiang, Y. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 2016, 52, 11296–11299.

    CAS  Google Scholar 

  44. Rafipoor, M.; Dupont, D.; Tornatzky, H.; Tessier, M. D.; Maultzsch, J.; Hens, Z.; Lange, H. Strain engineering in InP/(Zn, Cd)Se core/shell quantum dots. Chem. Mater. 2018, 30, 4393–4400.

    CAS  Google Scholar 

  45. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    CAS  Google Scholar 

  46. Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B. et al. Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3 (X = Cl, Br, I) nanorods. Angew. Chem., Int. Ed. 2018, 57, 16094–16098.

    CAS  Google Scholar 

  47. Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed. 2017, 56, 13887–13892.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation for Excellent Young Scholars of China (No. 51522402), the National Natural Science Foundation of China (No. 51972178), the Zhejiang Provincial Nature Science Foundation (No. LQ17E020002). The authors thank Engineer Dongsheng He for the help on double Cs-corrected transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyou Yang, Xinmei Hou or Tom Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yang, T., Fang, Z. et al. All-inorganic dual-phase halide perovskite nanorings. Nano Res. 13, 2994–3000 (2020). https://doi.org/10.1007/s12274-020-2963-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2963-x

Keywords

Navigation