Skip to main content
Log in

Advances of biological-camouflaged nanoparticles delivery system

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) which are innovation and research focus in drug delivery systems, still have some disadvantages limiting its application in clinical use, such as short circulation time, recognition and clearance by reticuloendothelial system (RES) and passive targeting in certain organs. However, the recent combination of natural components and nanotechnology has offered new solutions to address these problems. A novel biomimetic platform consisting of nanoparticle core and membrane shell, such as cell membrane, exosome or vesicle vastly improves properties of nanoparticles. These coated nanoparticles can replicate the unique functions of the membrane, such as prolonged blood circulation, active targeting capability and enhanced internalization. In this review, we focus on the newest development of biological-camouflaged nanoparticles and mainly introduce its application related to cancer therapy and toll-like receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roh, Y. G.; Shin, S. W.; Kim, S. Y.; Kim, S.; Lim, Y. T.; Oh, B. K.; Um, S. H. Protein nanoparticle fabrication for optimized reticuloendothelial system evasion and tumor accumulation. Langmuir2019, 35, 3992–3998.

    CAS  Google Scholar 

  2. Gao, W. W.; Zhang, L. F. Coating nanoparticles with cell membranes for targeted drug delivery. J. Drug Target2015, 23, 619–626.

    CAS  Google Scholar 

  3. Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control Release2015, 220, 600–607.

    CAS  Google Scholar 

  4. Durfee, P. N.; Lin, Y. S.; Dunphy, D. R.; Muñiz, A. J.; Butler, K. S.; Humphrey, K. R.; Lokke, A. J.; Agola, J. O.; Chou, S. S.; Chen, I. M. et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano2016, 10, 8325–8345.

    CAS  Google Scholar 

  5. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin.2019, 69, 7–34.

    Google Scholar 

  6. Curry, S. J.; Krist, A. H.; Owens, D. K. Annual report to the nation on the status of cancer, part II: Recent changes in prostate cancer trends and disease characteristics. Cancer2019, 125, 317–318.

    Google Scholar 

  7. Ward, E. M.; Sherman, R. L.; Henley, S. J.; Jemal, A.; Siegel, D. A.; Feuer, E. J.; Firth, A. U.; Kohler, B. A.; Scott, S.; Ma, J. et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20–49 years. J. Natl. Cancer Inst.2019, 111, 1279–1297.

    Google Scholar 

  8. Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials2017, 128, 69–83.

    CAS  Google Scholar 

  9. Kothandan, V. K.; Kothandan, S.; Kim, D. H.; Byun, Y.; Lee, Y. K.; Park, I. K.; Hwang, S. R. Crosstalk between stress granules, exosomes, tumour antigens, and immune cells: Significance for cancer immunity. Vaccines2020, 8, 172.

    Google Scholar 

  10. Mashouri, L.; Yousefi, H.; Aref, A. R.; Ahadi, A. M.; Molaei, F.; Alahari, S. K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer2019, 18, 75.

    Google Scholar 

  11. Malhotra, S.; Dumoga, S.; Sirohi, P.; Singh, N. Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl. Mater. Interfaces2019, 11, 22141–22151.

    CAS  Google Scholar 

  12. Hu, C. M.; Fang, R. H.; Luk, B. T.; Chen, K. N. H.; Carpenter, C.; Gao, W. W.; Zhang, K.; Zhang, L. F. “Marker-of-self” functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale2013, 5, 2664–2668.

    CAS  Google Scholar 

  13. Guo, Y. Y.; Wang, D.; Song, Q. L.; Wu, T. T.; Zhuang, X. T.; Bao, Y. L.; Kong, M.; Qi, Y.; Tan, S. W.; Zhang, Z. P. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano2015, 9, 6918–6933.

    CAS  Google Scholar 

  14. Luk, B. T.; Fang, R. H.; Hu, C. M.; Copp, J. A.; Thamphiwatana, S.; Dehaini, D.; Gao, W. W.; Zhang, K.; Li, S. L.; Zhang, L. F. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics2016, 6, 1004–1011.

    CAS  Google Scholar 

  15. Sun, T. T.; Dou, J. H.; Liu, S.; Wang, X.; Zheng, X. H.; Wang, Y. P.; Pei, J.; Xie, Z. G. Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces2018, 10, 7919–7926.

    CAS  Google Scholar 

  16. Rao, L.; Meng, Q. F.; Bu, L. L.; Cai, B.; Huang, Q. Q.; Sun, Z. J.; Zhang, W. F.; Li, A.; Guo, S. S.; Liu, W. et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces2017, 9, 2159–2168.

    CAS  Google Scholar 

  17. Han, X.; Wang, C.; Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chem.2018, 29, 852–860.

    CAS  Google Scholar 

  18. Pang, L.; Qin, J.; Han, L. M.; Zhao, W. J.; Liang, J. M.; Xie, Z. Y.; Yang, P.; Wang, J. X. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget2016, 7, 37081–37091.

    Google Scholar 

  19. Tu, Y. J.; Wu, Z. H.; Tan, B.; Yang, A. D.; Fang, Z. Q. Emodin: Its role in prostate cancer-associated inflammation (Review). Oncol. Rep.2019, 42, 1259–1271.

    CAS  Google Scholar 

  20. Parodi, A.; Quattrocchi, N.; Van De Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol2013, 8, 61–68.

    CAS  Google Scholar 

  21. Xuan, M. J.; Shao, J. X.; Dai, L. R.; Li, J. B.; He, Q. Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces2016, 8, 9610–9618.

    CAS  Google Scholar 

  22. Rao, L.; He, Z. B.; Meng, Q. F.; Zhou, Z. Y.; Bu, L. L.; Guo, S. S.; Liu, W.; Zhao, X. Z. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A2017, 105, 521–530.

    CAS  Google Scholar 

  23. Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano2016, 10, 7738–7748.

    CAS  Google Scholar 

  24. Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano2017, 11, 1397–1411.

    CAS  Google Scholar 

  25. Bower, J. E.; Lamkin, D. M. Inflammation and cancer-related fatigue: Mechanisms, contributing factors, and treatment implications. Brain Behav. Immun.2013, 30, S48–S57.

    CAS  Google Scholar 

  26. Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, inflammation, and cancer. Cell2010, 140, 883–899.

    CAS  Google Scholar 

  27. Yang, M.; McKay, D.; Pollard, J. W.; Lewis, C. E. Diverse functions of macrophages in different tumor microenvironments. Cancer Res.2018, 78, 5492–5503.

    CAS  Google Scholar 

  28. Han, Y. T.; Pan, H.; Li, W. J.; Chen, Z.; Ma, A. Q.; Yin, T.; Liang, R. J.; Chen, F. M.; Ma, Y. F.; Jin, Y. et al. T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci.2019, 6, 1900251.

    Google Scholar 

  29. Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W. X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett.2016, 16, 5895–5901.

    CAS  Google Scholar 

  30. Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano2016, 10, 10049–10057.

    CAS  Google Scholar 

  31. Cheng, K.; Gao, M.; Godfroy, J. I.; Brown, P. N.; Kastelowitz, N.; Yin, H. Specific activation of the TLR1-TLR2 heterodimer by small-molecule agonists. Sci. Adv.2015, 1, e1400139.

    Google Scholar 

  32. Chen, Z. P.; Cen, X. H.; Yang, J. J.; Tang, X. S.; Cui, K.; Cheng, K. Structure-based discovery of a specific TLR1-TLR2 small molecule agonist from the ZINC drug library database. Chem. Commun.2018, 54, 11411–11414.

    CAS  Google Scholar 

  33. Cen, X. H.; Zhu, G. Z.; Yang, J. J.; Yang, J. J.; Guo, J. Y.; Jin, J. B.; Nandakumar, K. S.; Yang, W.; Yin, H.; Liu, S. W.; Cheng, K. TLR1/2 specific small-molecule agonist suppresses leukemia cancer cell growth by stimulating cytotoxic T lymphocytes. Adv. Sci.2019, 6, 1802042.

    Google Scholar 

  34. Fang, R. H.; Hu, C. M.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett.2014, 14, 2181–2188.

    CAS  Google Scholar 

  35. Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano2018, 12, 5121–5129.

    CAS  Google Scholar 

  36. Han, Z.; Liu, S.; Lin, H. S.; Trivett, A. L.; Hannifin, S.; Yang, D; Oppenheim, J. J. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol. Immunother.2019, 68, 1073–1085.

    CAS  Google Scholar 

  37. Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol.2017, 2, eaan5692.

    Google Scholar 

  38. Kroll, A. V.; Fang, R. H.; Jiang, Y.; Zhou, J. R.; Wei, X. L.; Yu, C. L.; Gao, J.; Luk, B. T.; Dehaini, D.; Gao, W. W.; Zhang, L. F. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater.2017, 29, 1703969.

    Google Scholar 

  39. Jin, K. T.; Lan, H. R.; Chen, X. Y.; Wang, S. B.; Ying, X. J.; Lin, Y.; Mou, X. Z. Recent advances in carbohydrate-based cancer vaccines. Biotechnol. Lett.2019, 41, 641–650.

    CAS  Google Scholar 

  40. Marrocco, I.; Romaniello, D.; Yarden, Y. Cancer immunotherapy: The dawn of antibody cocktails. In Human Monoclonal Antibodiesi. Steinitz, M., Ed.; Humana Press: New York, 2019; pp 11–51.

    Google Scholar 

  41. Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes-structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol.2015, 81, 2–10.

    CAS  Google Scholar 

  42. Jones, L. B.; Bell, C. R.; Bibb, K. E.; Gu, L. L.; Coats, M. T.; Matthews, Q. L. Pathogens and their effect on exosome biogenesis and composition. Biomedicines2018, 6, 79.

    Google Scholar 

  43. Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev.2016, 106, 148–156.

    CAS  Google Scholar 

  44. Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control Release2015, 219, 396–405.

    CAS  Google Scholar 

  45. Yuan, D. F.; Zhao, Y. L.; Banks, W. A.; Bullock, K. M.; Haney, M.; Batrakova, E.; Kabanov, A. V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials2017, 142, 1–12.

    CAS  Google Scholar 

  46. Sato, Y. T.; Umezaki, K.; Sawada, S.; Mukai, S. A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep.2016, 6, 21933.

    CAS  Google Scholar 

  47. Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun.2019, 10, 3838.

    Google Scholar 

  48. Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol.2019, 7, 16.

    Google Scholar 

  49. Aghaalikhani, N.; Rashtchizadeh, N.; Shadpour, P.; Allameh, A.; Mahmoodi, M. Cancer stem cells as a therapeutic target in bladder cancer. J. Cell Physiol.2019, 234, 3197–3206.

    CAS  Google Scholar 

  50. Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater.2016, 26, 7495–7506.

    CAS  Google Scholar 

  51. Rao, L.; Cai, B.; Bu, L. L.; Liao, Q. Q.; Guo, S. S.; Zhao, X. Z.; Dong, W. F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano2017, 11, 3496–3505.

    CAS  Google Scholar 

  52. Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater.2016, 28, 3460–3466.

    CAS  Google Scholar 

  53. Hu, Q. Y.; Sun, W. J.; Qian, C. E.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater.2015, 27, 7043–7050.

    CAS  Google Scholar 

  54. Rao, L.; Bu, L. L.; Meng, Q. F.; Cai, B.; Deng, W. W.; Li, A.; Li, K. Y.; Guo, S. S.; Zhang, W. F.; Liu, W. et al. Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater.2017, 27, 1604774.

    Google Scholar 

  55. Rao, L.; Bu, L. L.; Ma, L.; Wang, W. B.; Liu, H. Q.; Wan, D.; Liu, J. F.; Li, A.; Guo, S. S.; Zhang, L. et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem., Int. Ed.2018, 57, 986–991.

    CAS  Google Scholar 

  56. Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett.2015, 15, 1403–1409.

    CAS  Google Scholar 

  57. Gao, C. Y.; Lin, Z. H.; Jurado-Sánchez, B.; Lin, X. K.; Wu, Z. G.; He, Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small2016, 12, 4056–4062.

    CAS  Google Scholar 

  58. Jiang, Q.; Liu, Y.; Guo, R. R.; Yao, X. X.; Sung, S.; Pang, Z. Q.; Yang, W. L. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials2019, 192, 292–308.

    CAS  Google Scholar 

  59. Deng, G. J.; Sun, Z. H.; Li, S. P.; Peng, X. H.; Li, W. J.; Zhou, L. H.; Ma, Y. F.; Gong, P.; Cai, L. T. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano2018, 12, 12096–12108.

    CAS  Google Scholar 

  60. Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Wang, S. L. et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater.2016, 28, 9581–9588.

    CAS  Google Scholar 

  61. Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. H.; Wang, C. T.; Zhang, X. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano2018, 12, 5241–5252.

    CAS  Google Scholar 

  62. Rao, L.; Meng, Q. F.; Huang, Q. Q.; Wang, Z. X.; Yu, G. T.; Li, A.; Ma, W. J.; Zhang, N. G.; Guo, S. S.; Zhao, X. Z. et al. Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater.2018, 28, 1803531.

    Google Scholar 

  63. Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater.2018, 30, 1706759.

    Google Scholar 

  64. Kroll, A. V.; Fang, R. H.; Zhang, L. F. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjugate Chem.2017, 28, 23–32.

    CAS  Google Scholar 

  65. Zhang, P. F.; Liu, G.; Chen, X. Y. Nanobiotechnology: Cell membrane-based delivery systems. Nano Today2017, 13, 7–9.

    CAS  Google Scholar 

  66. Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyteplatelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater.2017, 29, 1606209.

    Google Scholar 

  67. Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv.2019, 5, eaaw6870.

  68. Lynn, G. M.; Chytil, P.; Francica, J. R.; Lagová, A.; Kueberuwa, G.; Ishizuka, A. S.; Zaidi, N.; Ramirez-Valdez, R. A.; Blobel, N. J.; Baharom, F. et al. Impact of polymer-TLR-7/8 agonist (adjuvant) morphology on the potency and mechanism of CD8 T cell induction. Biomacromolecules2019, 20, 854–870.

    CAS  Google Scholar 

  69. Lu, F. J.; Mosley, Y. Y. C.; Carmichael, B.; Brown, D. D.; HogenEsch, H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine2019, 37, 1945–1953.

    CAS  Google Scholar 

  70. Guan, X. M. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B2015, 5, 402–418.

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (No. 81773558), the Natural Science Foundation of Guangdong Province (Nos. 2020A151501518 and 2018B030312010), and the Science and Technology Program of Guangzhou (No. 201904010380) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cheng, K. Advances of biological-camouflaged nanoparticles delivery system. Nano Res. 13, 2617–2624 (2020). https://doi.org/10.1007/s12274-020-2931-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2931-5

Keywords

Navigation