Skip to main content
Log in

Controlled growth of crossed ultralong carbon nanotubes by gas flow

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) work as the promising components of miniature electromechanical systems due to their excellent performances from individual to bundle scales. But it’s challenging to achieve precise patterning at nanoscale resolution with controlled position and orientation. Here, we demonstrate a fluidic strategy to interlace one-dimensional (1D) ultralong CNTs into the crossed pattern in a one-step in-situ process. Semi-circular substrates of different diameters were placed in front of the growth substrate to change the path and momentum of gas flow. Such flow perturbation caused by substrates could be markedly reflected within a micro-channel reactor, which led to formation of crossed ultralong CNTs at definite positions. Furthermore, precise control over the crossing angle as well as the diameter distribution of CNTs was achieved by varying the CNT length and diameter of semi-circular substrates. Our strategy has offered a feasible route for production of crossed ultralong CNTs and will contribute to multidimensional fluidic assembly of flexible nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano2012, 6, 1888–1900.

    Article  CAS  Google Scholar 

  2. Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol.2014, 29, 073001.

    Article  Google Scholar 

  3. Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano2018, 12, 11756–11784.

    Article  CAS  Google Scholar 

  4. Qing, Q.; Nezich, D. A.; Kong, J.; Wu, Z. Y.; Liu, Z. F. Local gate effect of mechanically deformed crossed carbon nanotube junction. Nano Lett.2010, 10, 4715–4720.

    Article  CAS  Google Scholar 

  5. Vitali, L.; Burghard, M.; Wahl, P.; Schneider, M. A.; Kern, K. Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction. Phys. Rev. Lett.2006, 96, 086804.

    Article  CAS  Google Scholar 

  6. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. et al. nanotube-based nonvolatile random access memory for molecular computing. Science2000, 289, 94–97.

    Article  CAS  Google Scholar 

  7. Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nano-systems. Science2003, 302, 1377–1379.

    Article  CAS  Google Scholar 

  8. Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol.2011, 6, 156–161.

    Article  CAS  Google Scholar 

  9. Heath, J. R.; Kuekes, P. J.; Snider, G. S.; Williams, R. S. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science1998, 280, 1716–1721.

    Article  CAS  Google Scholar 

  10. Zhang, J. W.; Cui, J. L.; Wang, X. W.; Wang, W. J.; Mei, X. S.; Yi, P. Y.; Yang, X. J.; He, X. Q. Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution. Phys. Status Solidi A2018, 215, 1700719.

    Article  Google Scholar 

  11. Cao, Q.; Han, S. J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun.2014, 5, 5071.

    Article  CAS  Google Scholar 

  12. Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol.2013, 8, 180–186.

    Article  CAS  Google Scholar 

  13. Huang, L. M.; Jia, Z.; O’Brien, S. Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem.2007, 17, 3863–3874.

    Article  CAS  Google Scholar 

  14. Zhang, Y. G.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett.2001, 79, 3155–3157.

    Article  CAS  Google Scholar 

  15. Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol.2008, 3, 195–200.

    Article  CAS  Google Scholar 

  16. Yao, Y. G.; Dai, X. C.; Feng, C. Q.; Zhang, J.; Liang, X. L.; Ding, L.; Choi, W.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process. Adv. Mater.2009, 21, 4158–4162.

    Article  CAS  Google Scholar 

  17. Zhang, R. F.; Zhang, Y. Y.; Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res.2017, 50, 179–189.

    Article  CAS  Google Scholar 

  18. Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano2013, 7, 6156–6161.

    Article  CAS  Google Scholar 

  19. Zhu, Z. X.; Wei, N.; Cheng, W. J.; Shen, B. Y.; Sun, S. L.; Gao, J.; Wen, Q.; Zhang, R. F.; Xu, J.; Wang, Y. et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun.2019, 10, 4467.

    Article  Google Scholar 

  20. Zhu, Z. X.; Wei, N.; Xie, H. H.; Zhang, R. F.; Bai, Y. X.; Wang, Q.; Zhang, C. X.; Wang, S.; Peng, L. M.; Dai, L. M. et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv.2016, 2, e1601572.

    Article  Google Scholar 

  21. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. et al. nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol.2018, 13, 589–595.

    Article  CAS  Google Scholar 

  22. Liu, Y.; Hong, J. X.; Zhang, Y.; Cui, R. L.; Wang, J. Y.; Tan, W. C.; Li, Y. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology2009, 20, 185601.

    Article  Google Scholar 

  23. Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc.2003, 125, 5636–5637.

    Article  CAS  Google Scholar 

  24. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature2017, 543, 234–238.

    Article  CAS  Google Scholar 

  25. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature2014, 510, 522–524.

    Article  CAS  Google Scholar 

  26. Yao, Y. G.; Li, Q. W.; Zhang, J.; Liu, R.; Jiao, L. Y.; Zhu, Y. T.; Liu, Z. F. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater.2007, 6, 283–286.

    Article  CAS  Google Scholar 

  27. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep.2005, 409, 47–99.

    Article  Google Scholar 

  28. Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O’Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science2006, 312, 554–556.

    Article  CAS  Google Scholar 

  29. Wu, W. Y.; Yue, J. Y.; Lin, X. Y.; Li, D. Q.; Zhu, F. Q.; Yin, X.; Zhu, J.; Wang, J. T.; Zhang, J.; Chen, Y. et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Res.2015, 8, 2721–2732.

    Article  CAS  Google Scholar 

  30. Hong, B. H.; Lee, J. Y.; Beetz, T.; Zhu, Y. M.; Kim, P.; Kim, K. S. Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc.2005, 127, 15336–15337.

    Article  CAS  Google Scholar 

  31. Xie, H. H.; Zhang, R. F.; Zhang, Y. Y.; Yin, Z.; Jian, M. Q.; Wei, F. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon2016, 98, 157–161.

    Article  CAS  Google Scholar 

  32. Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater.2010, 22, 1508–1515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported bythe National Key R&D Program of China (Nos. 2016YFA0200101 and 2016YFA0200102) and the National Natural Science Foundation of China (No. 21636005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Bai, Y., Wei, N. et al. Controlled growth of crossed ultralong carbon nanotubes by gas flow. Nano Res. 13, 1988–1995 (2020). https://doi.org/10.1007/s12274-020-2898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2898-2

Keywords

Navigation