Skip to main content
Log in

Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) with solvatochromic emission colors in different solvents have attracted much attention as a new class of luminescent nanomaterial owing to their facile synthesis and low production cost. In this work, we prepared two kinds of CDs with solvatochromic emissions: green emission CDs (G-CDs) and multicolor emission CDs (M-CDs). G-CDs synthesized from o-phenylenediamine exhibited weak photoluminescence emission (quantum yield 2.8%–6.1%) and 39 nm solvatochromic shifts (492–531 nm). In contrast, M-CDs prepared from o-phenylenediamine and 4-aminophenol showed 87 nm solvatochromic shift range (505–592 nm) and much higher photoluminescence quantum yield (18.4%–32.5%). The two CDs exhibited different emission, absorption, and photoluminescence lifetime. The origin of solvatochromic shifts and the formation mechanism of CDs were demonstrated by analyzing the structures and compositions of two CDs. High percentages of pyrrolic nitrogen and amino nitrogen make wider solvatochromic shifts and higher quantum yields. The results were well supported by density functional theory calculations. This effective strategy to expand solvatochromic shift range and improve quantum yields could open a new window to prepare satisfied solvatochromic carbon dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res.2014, 47, 20–30.

    Article  CAS  Google Scholar 

  2. Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today2014, 9, 590–603.

    Article  CAS  Google Scholar 

  3. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed.2013, 52, 3953–3957.

    Article  CAS  Google Scholar 

  4. Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc.2009, 131, 11308–11309.

    Article  CAS  Google Scholar 

  5. Chizhik, A. M.; Stein, S.; Dekaliuk, M. O.; Battle, C.; Li, W. X.; Huss, A.; Platen, M.; Schaap, I. A. T.; Gregor, I.; Demchenko, A. P. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett.2016, 16, 237–242.

    Article  CAS  Google Scholar 

  6. Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano2013, 7, 11234–11241.

    Article  CAS  Google Scholar 

  7. Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater.2016, 28, 3516–3521.

    CAS  Google Scholar 

  8. Gao, D.; Zhao, H.; Chen, X.; Fan, H. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Mater. Today Chem.2018, 9, 103–113.

    Article  CAS  Google Scholar 

  9. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed.2010, 49, 6726–6744.

    Article  CAS  Google Scholar 

  10. Choi, Y.; Kim, S.; Choi, Y.; Song, J.; Kwon, T. H.; Kwon, O. H.; Kim, B. S. Morphology tunable hybrid carbon nanosheets with solvatochromism. Adv. Mater.2017, 29, 1701075.

    Google Scholar 

  11. Wang, H.; Sun, C.; Chen, X. R.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S. Y.; Wang, S. N.; Yu, W. W. Excitation wavelength independent visible color emission of carbon dots. Nanoscale2017, 9, 1909–1915.

    Article  CAS  Google Scholar 

  12. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed.2015, 54, 5360–5363.

    Article  CAS  Google Scholar 

  13. Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed.2015, 54, 2970–2974.

    Article  CAS  Google Scholar 

  14. Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater.2015, 27, 1663–1667.

    Article  CAS  Google Scholar 

  15. Zhan, J.; Geng, B. J.; Wu, K.; Xu, G.; Wang, L.; Guo, R. Y.; Lei, B.; Zheng, F. F.; Pan, D. Y.; Wu, M. H. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon2018, 130, 153–163.

    Article  CAS  Google Scholar 

  16. Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun.2018, 9, 2249.

    Article  CAS  Google Scholar 

  17. Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed.2016, 55, 7231–7235.

    Article  CAS  Google Scholar 

  18. Ren, J. K.; Sun, J. B.; Sun, X. M.; Song, R.; Xie, Z.; Zhou, S. Y. Precisely controlled up/down-conversion liquid and solid state photoluminescence of carbon dots. Adv. Opt. Mater.2018, 6, 1800115.

    Article  CAS  Google Scholar 

  19. Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C2016, 120, 10591–10604.

    Article  CAS  Google Scholar 

  20. Sciortino, A.; Marino, E.; van Dam, B.; Schall, P.; Cannas, M.; Messina, F. Solvatochromism unravels the emission mechanism of carbon nanodots. J. Phys. Chem. Lett.2016, 7, 3419–3423.

    Article  CAS  Google Scholar 

  21. Basu, N.; Mandal, D. Solvatochromic response of carbon dots: Evidence of solvent interaction with different types of emission centers. J. Phys. Chem. C2018, 122, 18732–18741.

    Article  CAS  Google Scholar 

  22. Klymchenko, A. S. Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications. Acc. Chem. Res.2017, 50, 366–375.

    Article  CAS  Google Scholar 

  23. Mukherjee, S.; Prasad, E.; Chadha, A. H-bonding controls the emission properties of functionalized carbon Nano-dots. Phys. Chem. Chem. Phys.2017, 19, 7288–7296.

    Article  CAS  Google Scholar 

  24. Han, K. L.; Zhao, G. J. Hydrogen Bonding and Transfer in the Excited State; John Wiley & Sons: New York, 2011.

    Google Scholar 

  25. Gierschner, J.; Cornil, J.; Egelhaaf, H. J. Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory. Adv. Mater.2007, 19, 173–191.

    Article  CAS  Google Scholar 

  26. Hashemi, D.; Ma, X.; Ansari, R.; Kim, J.; Kieffer, J. Design principles for the energy level tuning in donor/acceptor conjugated polymers. Phys. Chem. Chem. Phys.2019, 21, 789–799.

    Article  CAS  Google Scholar 

  27. Kim, B. G.; Ma, X.; Chen, C.; Le, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater.2013, 23, 439–445.

    Article  CAS  Google Scholar 

  28. Eakins, G. L.; Alford, J. S.; Tiegs, B. J.; Breyfogle, B. E.; Stearman, C. J. Tuning HOMO-LUMO levels: Trends leading to the design of 9-fluorenone scaffolds with predictable electronic and optoelectronic properties. J. Phys. Org. Chem.2011, 24, 1119–1128.

    Article  CAS  Google Scholar 

  29. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed.2013, 52, 7800–7804.

    Article  CAS  Google Scholar 

  30. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano2013, 7, 1239–1245.

    Article  CAS  Google Scholar 

  31. Chen, X. X.; Jin, Q. Q.; Wu, L. Z.; Tung, C. H.; Tang, X. J. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew. Chem., Int. Ed.2014, 53, 12542–12547.

    CAS  Google Scholar 

  32. Sarkar, S.; Sudolska, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zboril, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C2016, 120, 1303–1308.

    Article  CAS  Google Scholar 

  33. Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano2017, 11, 12402–12410.

    Article  CAS  Google Scholar 

  34. Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res.2017, 10, 1673–1696.

    Article  CAS  Google Scholar 

  35. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed.2012, 51, 11496–11500.

    Article  CAS  Google Scholar 

  36. Yang, C. H.; Zhu, S. J.; Li, Z. L.; Li, Z.; Chen, C.; Sun, L.; Tang, W.; Liu, R.; Sun, Y.; Yu, M. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem. Commun.2016, 52, 11912–11914.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial supports from the Board or Regent Supporting Fund (BORSF) Endowed Professorship, the Lousiana State University Shreveport (LSUS) R&D Funds, the Qingdao Municipal Science and Technology Commission (No. 16-5-1-86-jch), and the Scientific Research Foundation of Qingdao University of Science and Technology (QUST) (No. 210/010022914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liang or William W. Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Haydel, P., Sui, N. et al. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen. Nano Res. 13, 2492–2499 (2020). https://doi.org/10.1007/s12274-020-2884-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2884-8

Keywords

Navigation