Skip to main content
Log in

Crystal-plane-dependent redox reaction on Cu surfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The dynamic redox process of surface oxide layers on metal surfaces is of great significance for understanding the active phase in catalytic reactions. We studied the formation of surface oxide layers on Cu(111) and Cu(110) in O2, as well as the subsequent reduction by CO using in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). By monitoring and comparing the oxidation process of Cu(111) and Cu(110) surfaces, we found a crystal-plane-dependent reaction mechanism, which also applies to the reduction of surface oxide layers on Cu surfaces. We found XPS Cu spectra cannot be used to identify the various surface oxide layer on Cu surfaces, suggesting their presence in catalytic reactions might have been overlooked. The combination of STM and XPS studies are thus advantageous in identifying surface oxide structures and pinpointing the active phases in the redox process, which paves the way for engineering the catalyst and reaction environment for optimized catalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao, F. F.; Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science2011, 331, 171–174.

    Article  CAS  Google Scholar 

  2. Zhang, S. R.; Nguyen, L.; Zhu, Y.; Zhan, S. H.; Tsung, C. K.; Tao, F. F. In-situ studies of nanocatalysis. Acc. Chem. Res.2013, 46, 1731–1739.

    Article  CAS  Google Scholar 

  3. Lundgren, E.; Zhang, C.; Merte, L. R.; Shipilin, M.; Blomberg, S.; Hejral, U.; Zhou, J. F.; Zetterberg, J.; Gustafson, J. Novel in situ techniques for studies of model catalysts. Acc. Chem. Res.2017, 50, 2326–2333.

    Article  CAS  Google Scholar 

  4. Vestergaard, E. K.; Vang, R. T.; Knudsen, J.; Pedersen, T. M.; An, T.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Adsorbate-induced alloy phase separation: A direct view by high-pressure scanning tunneling microscopy. Phys. Rev. Lett.2005, 95, 126101.

    Article  CAS  Google Scholar 

  5. Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun.2017, 8, 14169.

    Article  CAS  Google Scholar 

  6. Xu, F.; Mudiyanselage, K.; Baber, A. E.; Soldemo, M.; Weissenrieder, J.; White, M. G; Stacchiola, D. J. Redox-mediated reconstruction of copper during carbon monoxide oxidation. J. Phys. Chem. C2014, 118, 15902–15909.

    Article  CAS  Google Scholar 

  7. Baber, A. E.; Xu, F.; Dvorak, F.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Sadowski, J. T.; Rodriguez, J. A.; Matolin, V. et al. In situ imaging of Cu2O under reducing conditions: Formation of metallic fronts by mass transfer. J. Am. Chem. Soc.2013, 135, 16781–16784.

    Article  CAS  Google Scholar 

  8. Cai, J.; Han, Y.; Chen, S. Y.; Crumlin, E. J.; Yang, B.; Li, Y. M.; Liu, Z. CO2 activation on Ni(111) and Ni(100) surfaces in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. J. Phys. Chem. C2019, 123, 12176–12182.

    Article  CAS  Google Scholar 

  9. Starr, D. E.; Liu, Z.; Havecker, M.; Knop-Gericke, A.; Bluhm, H. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev.2013, 42, 5833–5857.

    Article  CAS  Google Scholar 

  10. Koitaya, T.; Yamamoto, S.; Matsuda, I.; Yoshinobu, J. Surface chemistry of carbon dioxide on copper model catalysts studied by ambient-pressure X-ray photoelectron spectroscopy. e-J. Surf. Sci. Nanotech.2019, 17, 169–178.

    Article  Google Scholar 

  11. Kuld, S.; Conradsen, C.; Moses, P. G.; Chorkendorff, I.; Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem., Int. Ed.2014, 53, 5941–5945.

    Article  CAS  Google Scholar 

  12. Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science2012, 336, 893–897.

    Article  CAS  Google Scholar 

  13. Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjaer, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science2016, 352, 969–974.

    Article  CAS  Google Scholar 

  14. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science2017, 355, 1296–1299.

    Article  CAS  Google Scholar 

  15. Hua, Q.; Cao, T.; Gu, X. K.; Lu, J. Q.; Jiang, Z. Q.; Pan, X. R.; Luo, L. F.; Li, W. X.; Huang, W. X. Crystal-plane-controlled Selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew. Chem., Int. Ed.2014, 53, 4856–4861.

    Article  CAS  Google Scholar 

  16. Schulz, K. H.; Cox, D. F. Propene oxidation over Cu2O single-crystal surfaces: A surface science study of propene activation at 1 atm and 300 K. J. Catal.1993, 143, 464–480.

    Article  CAS  Google Scholar 

  17. Greiner, M. T.; Cao, J.; Jones, T. E.; Beeg, S.; Skorupska, K.; Carbonio, E. A.; Sezen, H.; Amati, M.; Gregoratti, L.; Willinger, M. G. et al. Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal.2018, 8, 2286–2295.

    Article  CAS  Google Scholar 

  18. Yang, X. F.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G. Direct epoxidation of propylene over stabilized Cu+ surface sites on titanium-modified Cu2O. Angew. Chem., Int. Ed.2015, 54, 11946–11951.

    Article  CAS  Google Scholar 

  19. Greiner, M. T.; Jones, T. E.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. Ethylene epoxidation at the phase transition of copper oxides. J. Am. Chem. Soc.2017, 139, 11825–11832.

    Article  CAS  Google Scholar 

  20. An, W.; Baber, A. E.; Xu, F.; Soldemo, M.; Weissenrieder, J.; Stacchiola, D.; Liu, P. Mechanistic study of CO titration on Cu,O/Cu(111) (x≤2) surfaces. ChemCatChem2014, 6, 2364–2372.

    Article  CAS  Google Scholar 

  21. Zhan, W. C.; Wang, J. L.; Wang, H. F.; Zhang, J. S.; Liu, X. F.; Zhang, P. F.; Chi, M. F.; Guo, Y. L.; Guo, Y.; Lu, G. Z. et al. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J. Am. Chem. Soc.2017, 139, 8846–8854.

    Article  CAS  Google Scholar 

  22. Baber, A. E.; Yang, X. F.; Kim, H. Y.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Al-Mahboob, A.; Sadowski, J. T.; Evans, J. et al. Stabilization of catalytically active Cu+ surface sites on titanium-copper mixed-oxide films. Angew. Chem., Int. Ed.2014, 53, 5336–5340.

    Article  CAS  Google Scholar 

  23. Zhang, Z. H.; Wu, H.; Yu, Z. Y.; Song, R.; Qian, K.; Chen, X. Y.; Tian, J.; Zhang, W. H.; Huang, W. X. Site-resolved Cu2O catalysis in the oxidation of CO. Angew. Chem, Int. Ed.2019, 58, 4276–4280.

    Article  CAS  Google Scholar 

  24. Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc.2012, 134, 7231–7234.

    Article  CAS  Google Scholar 

  25. Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nerskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal.2018, 1, 111–119.

    Article  CAS  Google Scholar 

  26. Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nerskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc.2017, 139, 8329–8336.

    Article  CAS  Google Scholar 

  27. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc.2019, 141, 4624–4633.

    Article  CAS  Google Scholar 

  28. Pierron, E. D.; Rashkin, J. A.; Roth, J. F. Copper oxide on alumina: I. XRD studies of catalyst composition during air oxidation of carbon monoxide. J. Catal.1967, 9, 38–44.

    Article  CAS  Google Scholar 

  29. Huang, T. J.; Tsai, D. H. CO oxidation behavior of copper and copper oxides. Catal. Lett.2003, 87, 173–178.

    Article  CAS  Google Scholar 

  30. Pöllmann, S.; Bayer, A.; Ammon, C.; Steinrück, H. P. Adsorption and reaction of methanol on clean and oxygen precovered Cu(111). Z. Phys. Chem.2004, 218, 957–971.

    Article  Google Scholar 

  31. Marimuthu, A.; Zhang, J. W.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science2013, 339, 1590–1593.

    Article  CAS  Google Scholar 

  32. Greiner, M. T.; Jones, T. E.; Johnson, B. E.; Rocha, T. C. R.; Wang, Z. J.; Armbruster, M.; Willinger, M.; Knop-Gericke, A.; Schlögl, R. The oxidation of copper catalysts during ethylene epoxidation. Phys. Chem. Chem. Phys.2015, 17, 25073–25089.

    Article  CAS  Google Scholar 

  33. Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep.2015, 70, 424–447.

    Article  CAS  Google Scholar 

  34. Coulman, D. J.; Wintterlin, J.; Behm, R. J.; Ertl, G. Novel mechanism for the formation of chemisorption phases: The (2×1)O-Cu(110) “added row” reconstruction. Phys. Rev. Lett.1990, 64, 1761–1764.

    Article  CAS  Google Scholar 

  35. Feidenhans’l, R.; Grey, F.; Nielsen, M.; Besenbacher, F.; Jensen, F.; Laegsgaard, E.; Stensgaard, I. I.; Jacobsen, K. W.; Nerskov, J. K.; Johnson, R. L. Oxygen chemisorption on Cu(110): A model for the c(6x2) structure. Phys. Rev. Lett.1990, 65, 2027–2030.

    Article  Google Scholar 

  36. Matsumoto, T.; Bennett, R. A.; Stone, P.; Yamada, T.; Domen, K.; Bowker, M. Scanning tunneling microscopy studies of oxygen adsorption on Cu(111). Surf. Sci.2001, 471, 225–245.

    Article  CAS  Google Scholar 

  37. Wiame, F.; Maurice, V.; Marcus, P. Initial stages of oxidation of Cu(111). Surf. Sci.2007, 601, 1193–1204.

    Article  CAS  Google Scholar 

  38. Liu, Q. Q.; Li, L.; Cai, N.; Saidi, W. A.; Zhou, G. W. Oxygen chemisorption-induced surface phase transitions on Cu(110). Surf. Sci.2014, 627, 75–84.

    Article  CAS  Google Scholar 

  39. Liu, W.; Wong, K. C.; Mitchell, K. A. R. Structural details for the Cu(110)-c(6 × 2)-O surface determined by tensor LEED. Surf. Sci.1995, 339, 151–158.

    Article  CAS  Google Scholar 

  40. Yang, F.; Choi, Y.; Liu, P.; Stacchiola, D.; Hrbek, J.; Rodriguez, J. A. Identification of 5–7 defects in a copper oxide surface. J. Am. Chem. Soc.2011, 133, 11474–11477.

    Article  CAS  Google Scholar 

  41. Hensley, A. J. R.; Therrien, A. J.; Zhang, R. Q.; Marcinkowski, M. D.; Lucci, F. R.; Sykes, E. C. H.; McEwen, J. S. CO adsorption on the “29” CuxO/Cu(111) surface: An integrated DFT, STM, and TPD study. J. Phys. Chem. C2016, 120, 25387–25394.

    Article  CAS  Google Scholar 

  42. Therrien, A. J.; Zhang, R. Q.; Lucci, F. R.; Marcinkowski, M. D.; Hensley, A.; McEwen, J. S.; Sykes, E. C. H. Structurally accurate model for the “29”-structure of CuxO/Cu(111): A DFT and STM study. J. Phys. Chem. C2016, 120, 10879–10886.

    Article  CAS  Google Scholar 

  43. Therrien, A. J.; Hensley, A. J. R.; Hannagan, R. T.; Schilling, A. C.; Marcinkowski, M. D.; Larson, A. M.; McEwen, J. S.; Sykes, E. C. H. Surface-templated assembly of molecular methanol on the thin film “29” Cu(111) surface oxide. J. Phys. Chem. C2019, 123, 2911–2921.

    Article  CAS  Google Scholar 

  44. Yang, F.; Choi, Y.; Liu, P.; Hrbek, J.; Rodriguez, J. A. Autocatalytic reduction of a Cu2O/Cu(111) surface by CO: STM, XPS, and DFT studies. J. Phys. Chem. C2010, 114, 17042–17050.

    Article  CAS  Google Scholar 

  45. Pérez León, C.; Sürgers, C.; Löhneysen, H. V. Formation of copper oxide surface structures via pulse injection of air onto Cu(111) surfaces. Phys. Rev. B2012, 85, 035434.

    Article  CAS  Google Scholar 

  46. Niu, T. C.; Jiang, Z.; Zhu, Y. G.; Zhou, G. W.; Van Spronsen, M. A.; Tenney, S. A.; Boscoboinik, J. A.; Stacchiola, D. Oxygen-promoted methane activation on copper. J. Phys. Chem. B2018, 122, 855–863.

    Article  CAS  Google Scholar 

  47. Russell, J. N. Jr.; Gates, S. M.; Yates, J. T. Jr. Reaction of methanol with Cu(111) and Cu(111) + O(Ads). Surf. Sci.1985, 163, 516–540.

    Article  CAS  Google Scholar 

  48. Dubois, L. H. Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study. Surf. Sci.1982, 119, 399–410.

    Article  CAS  Google Scholar 

  49. Niehus, H. Surface reconstruction of Cu (111) upon oxygen adsorption. Surf. Sci.1983, 130, 41–49.

    Article  CAS  Google Scholar 

  50. Jensen, F.; Besenbacher, F.; Laegsgaard, E.; Stensgaard, I. Surface reconstruction of Cu(110) induced by oxygen chemisorption. Phys. Rev. B1990, 41, 10233–10236.

    Article  CAS  Google Scholar 

  51. Kuk, Y.; Chua, F. M.; Silverman, P. J.; Meyer, J. A. O chemisorption on Cu(110) by scanning tunneling microscopy. Phys. Rev. B1990, 41, 12393–12402.

    Article  CAS  Google Scholar 

  52. Coulman, D.; Wintterlin, J.; Barth, J. V.; Ertl, G.; Behm, R. J. An STM investigation of the Cu(110)-c(6 × 2)O system. Surf. Sci.1990, 240, 151–162.

    Article  CAS  Google Scholar 

  53. Li, L.; Liu, Q. Q.; Li, J.; Saidi, W. A.; Zhou, G. W. Kinetic barriers of the phase transition in the oxygen chemisorbed Cu(110)-(2 × 1)-O as a function of oxygen coverage. J. Phys. Chem. C2014, 118, 20858–20866.

    Article  CAS  Google Scholar 

  54. Wu, D. X.; Li, J.; Zhou, G. W. Oxygen adsorption at heterophase boundaries of the oxygenated Cu(110). Surf. Sci.2017, 666, 28–43.

    Article  CAS  Google Scholar 

  55. Tobin, J. P.; Hirschwald, W.; Cunningham, J. XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing. Appl. Surf. Sci.1983, 16, 441–452.

    Article  CAS  Google Scholar 

  56. Lawton, T. J.; Kyriakou, G.; Baber, A. E.; Sykes, E. C. H. An atomic scale view of methanol reactivity at the Cu(111)/CuOx interface. ChemCatChem2013, 5, 2684–2690.

    Article  CAS  Google Scholar 

  57. Jernigan, G. G.; Somorjai, G. A. Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, Copper (I) oxide, and Copper (II) Oxide — a surface science and kinetic study. J. Catal.1994, 147, 567–577.

    Article  CAS  Google Scholar 

  58. Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science2002, 295, 2053–2055.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministry of Science and Technology of China (Nos. 2017YFB0602205 and 2016YFA0202803), and National Natural Science Foundation of China (Nos. 21972144, 91545204, and 11227902). The authors thank the support from Analytical Instrumentation Center (No. SPST-AIC10112914), SPST, ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, H., Wang, W. et al. Crystal-plane-dependent redox reaction on Cu surfaces. Nano Res. 13, 1677–1685 (2020). https://doi.org/10.1007/s12274-020-2791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2791-z

Keywords

Navigation