Skip to main content
Log in

Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorescence microscopy is the method of choice for studying intracellular dynamics. However, its success depends on the availability of specific and stable markers. A prominent example of markers that are rapidly gaining interest are nanobodies (Nbs, ~ 15 kDa), which can be functionalized with bright and photostable organic fluorophores. Due to their relatively small size and high specificity, Nbs offer great potential for high-quality long-term subcellular imaging, but suffer from the fact that they cannot spontaneously cross the plasma membrane of live cells. We have recently discovered that laser-induced photoporation is well suited to deliver extrinsic labels to living cells without compromising their viability. Being a laser-based technology, it is readily compatible with light microscopy and the typical cell recipients used for that. Spurred by these promising initial results, we demonstrate here for the first time successful long-term imaging of specific subcellular structures with labeled nanobodies in living cells. We illustrate this using Nbs that target GFP/YFP-protein constructs accessible in the cytoplasm, actin-bundling protein Fascin, and the histone H2A/H2B heterodimers. With an efficiency of more than 80% labeled cells and minimal toxicity (∼ 2%), photoporation proved to be an excellent intracellular delivery method for Nbs. Time-lapse microscopy revealed that cell division rate and migration remained unaffected, confirming excellent cell viability and functionality. We conclude that laser-induced photoporation labeled Nbs can be easily delivered into living cells, laying the foundation for further development of a broad range of Nbs with intracellular targets as a toolbox for long-term live-cell microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skylaki, S.; Hilsenbeck, O.; Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol.2016, 34, 1137–1144.

    CAS  Google Scholar 

  2. Lee Snapp, E. Fluorescent proteins: A cell biologist’s user guide. Trends Cell Biol.2009, 19, 649–655.

    Google Scholar 

  3. Fernández-Suárez, M.; Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol.2008, 9, 929–943.

    Google Scholar 

  4. Zheng, Q. S.; Juette, M. F.; Jockusch, S.; Wasserman, M. R.; Zhou, Z.; Altman, R. B.; Blanchard, S. C. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev.2014, 43, 1044–1056.

    CAS  Google Scholar 

  5. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.2003, 21, 47–51.

    CAS  Google Scholar 

  6. Canton, I.; Massignani, M.; Patikarnmonthon, N.; Chierico, L.; Robertson, J.; Renshaw, S. A.; Warren, N. J.; Madsen, J. P.; Armes, S. P.; Lewis, A. L. et al. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB J.2013, 27, 98–108.

    CAS  Google Scholar 

  7. Lukinavičius, G.; Reymond, L.; D’Este, E.; Masharina, A.; Göttfert, F.; Ta, H.; Güther, A.; Fournier, M.; Rizzo, S.; Waldmann, H. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods2014, 11, 731–733.

    Google Scholar 

  8. Lukinavičius, G.; Reymond, L.; Umezawa, K.; Sallin, O.; D’Este, E.; Göttfert, F.; Ta, H.; Hell, S. W.; Urano, Y.; Johnsson, K. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc.2016, 138, 9365–9368.

    Google Scholar 

  9. Dalby, B.; Cates, S.; Harris, A.; Ohki, E. C.; Tilkins, M. L.; Price, P. J.; Ciccarone, V. C. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods2004, 33, 95–103.

    CAS  Google Scholar 

  10. Longo, P. A.; Kavran, J. M.; Kim, M. S.; Leahy, D. J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol.2013, 529, 227–240.

    CAS  Google Scholar 

  11. Teng, K. W.; Ishitsuka, Y.; Ren, P.; Youn, Y.; Deng, X.; Ge, P. H.; Lee, S. H.; Belmont, A. S.; Selvin, P. R. Labeling proteins inside living cells using external fluorophores for microscopy. eLife2016, 5, e20378.

    Google Scholar 

  12. Sharei A.; Zoldan J.; Adamo A.; Sim W. Y.; Cho N.; Jackson E.; Mao S., Schneider S., Han M. J., Lytton-Jean, A. et al. A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy of Sciences.2013, 110, 2082–2087.

    CAS  Google Scholar 

  13. Kollmannsperger, A.; Sharei, A.; Raulf, A.; Heilemann, M.; Langer, R.; Jensen, K. F.; Wieneke, R.; Tampé, R. Live-cell protein labelling with nanometre precision by cell squeezing. Nat. Commun.2016, 7, 10372.

    CAS  Google Scholar 

  14. Xu, J. M.; Teslaa, T.; Wu, T. H.; Chiou, P. Y.; Teitell, M. A.; Weiss, S. Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells. Nano Lett.2012, 12, 5669–5672.

    CAS  Google Scholar 

  15. Xiong, R. H.; Raemdonck, K.; Peynshaert, K.; Lentacker, I.; de Cock, I.; Demeester, J.; de Smedt, S. C.; Skirtach, A. G.; Braeckmans, K. Comparison of gold nanoparticle mediated photoporation: Vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano2014, 8, 6288–6296.

    CAS  Google Scholar 

  16. Xiong, R. H.; Joris, F.; Liang, S. Y.; de Rycke, R.; Lippens, S.; Demeester, J.; Skirtach, A.; Raemdonck, K.; Himmelreich, U.; de Smedt, S. C. et al. Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett.2016, 16, 5975–5986.

    CAS  Google Scholar 

  17. Liu, J.; Xiong, R. H.; Brans, T.; Lippens, S.; Parthoens, E.; Zanacchi, F. C.; Magrassi, R.; Singh, S. K.; Kurungot, S.; Szunerits, S. et al. Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci. Appl.2018, 7, 47.

    Google Scholar 

  18. Rothbauer, U.; Zolghadr, K.; Tillib, S.; Nowak, D.; Schermelleh, L.; Gahl, A.; Backmann, N.; Conrath, K.; Muyldermans, S.; Cardoso, M. C. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods2006, 3, 887–889.

    CAS  Google Scholar 

  19. Chakravarty, R.; Goel, S.; Cai, W. B. Nanobody: The “magic bullet” for molecular imaging? Theranostics2014, 4, 386–389.

    CAS  Google Scholar 

  20. Ries, J.; Kaplan, C.; Platonova, E.; Eghlidi, H.; Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods2012, 9, 582–584.

    CAS  Google Scholar 

  21. Yamane, D.; Wu, Y. C.; Wu, T. H.; Toshiyoshi, H.; Teitell, M. A.; Chiou, P. Y. Electrical impedance monitoring of photothermal porated mammalian cells. J. Lab. Autom.2014, 19, 50–59.

    CAS  Google Scholar 

  22. Kubala, M. H.; Kovtun, O.; Alexandrov, K.; Collins, B. M. Structural and thermodynamic analysis of the GFP: GFP-nanobody complex. Protein Sci.2010, 19, 2389–2401.

    CAS  Google Scholar 

  23. Bolte, S.; Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc.2006, 224, 213–232.

    CAS  Google Scholar 

  24. Dunn, K. W.; Kamocka, M. M.; McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol.2011, 300, C723–C742.

    CAS  Google Scholar 

  25. Li, Q.; Lau, A.; Morris, T. J.; Guo, L.; Fordyce, C. B.; Stanley, E. F. A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal: Analysis by quantitative immunocolocalization. J. Neurosc.2004, 24, 4070–4081.

    CAS  Google Scholar 

  26. Chaudhry, A.; Shi, R.; Luciani, D. S. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function and dynamics in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab., in press, DOI: https://doi.org/10.1152/ajpendo.00457.2019.

    CAS  Google Scholar 

  27. Hashimoto, Y.; Skacel, M.; Adams, J. C. Roles of fascin in human carcinoma motility and signaling: Prospects for a novel biomarker? Int. J. Biochem. Cell Biol.2005, 37, 1787–1804.

    CAS  Google Scholar 

  28. Jayo, A.; Parsons, M. Fascin: A key regulator of cytoskeletal dynamics. Int. J. Biochem. Cell Biol.2010, 42, 1614–1617.

    CAS  Google Scholar 

  29. Adams, J. C. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: Implications for the anti-adhesive activities of thrombospondin-1. J. Cell Sci.1995, 108, 1977–1990.

    CAS  Google Scholar 

  30. Mattila, P. K.; Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol.2008, 9, 446–454.

    CAS  Google Scholar 

  31. Adams, J. C. Fascin protrusions in cell interactions. Trends Cardiovasc. Med.2004, 14, 221–226.

    CAS  Google Scholar 

  32. Cory, G. Scratch-wound assay. In Cell Migration. Wells, C. M.; Parsons, M., Eds.; Humana Press: New York, 2011; pp 25–30.

    Google Scholar 

  33. Allen, T. D.; Cronshaw, J. M.; Bagley, S.; Kiseleva, E.; Goldberg, M. W. The nuclear pore complex: Mediator of translocation between nucleus and cytoplasm. J. Cell Sci.2000, 113, 1651–1659.

    CAS  Google Scholar 

  34. Martens, T. F.; Remaut, K.; Demeester, J.; de Smedt, S. C.; Braeckmans, K. Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today2014, 9, 344–364.

    CAS  Google Scholar 

  35. Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol.2013, 31, 638–646.

    CAS  Google Scholar 

  36. Berger, S. M.; Pesold, B.; Reber, S.; Schönig, K.; Berger, A. J.; Weidenfeld, I.; Miao, J.; Berger, M. R.; Gruss, O. J.; Bartsch, D. et al. Quantitative analysis of conditional gene inactivation using rationally designed, tetracycline-controlled miRNAs. Nucleic Acids Res.2010, 38, e168.

    Google Scholar 

  37. Klein, A.; Hank, S.; Raulf, A.; Joest, E. F.; Tissen, F.; Heilemann, M.; Wieneke, R.; Tampé, R. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem. Sci.2018, 9, 7835–7842.

    CAS  Google Scholar 

  38. Herce, H. D.; Schumacher, D.; Schneider, A. F. L.; Ludwig, A. K.; Mann, F. A.; Fillies, M.; Kasper, M. A.; Reinke, S.; Krause, E.; Leonhardt, H. et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat. Chem.2017, 9, 762–771.

    CAS  Google Scholar 

  39. Sagar; Pröls, F.; Wiegreffe, C.; Scaal, M. Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development2015, 142, 665–671.

    CAS  Google Scholar 

  40. Metwally, K.; Mensah, S.; Baffou, G. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C2015, 119, 28586–28596.

    CAS  Google Scholar 

  41. Gilje, S.; Dubin, S.; Badakhshan, A.; Farrar, J.; Danczyk, S. A.; Kaner, R. B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater.2010, 22, 419–423.

    CAS  Google Scholar 

  42. Abdelsayed, V.; Moussa, S.; Hassan, H. M.; Aluri, H. S.; Collinson, M. M.; El-Shall, M. S. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J. Phys. Chem. Lett.2010, 1, 2804–2809.

    CAS  Google Scholar 

  43. Xiong, R. H.; Drullion, C.; Verstraelen, P.; Demeester, J.; Skirtach, A. G.; Abbadie, C.; de Vos, W. H.; de Smedt, S. C.; Braeckmans, K. Fast spatial-selective delivery into live cells. J. Control. Release2017, 266, 198–204.

    CAS  Google Scholar 

  44. Xiong, R. H.; Verstraelen, P.; Demeester, J.; Skirtach, A. G.; Timmermans, J. P.; de Smedt, S. C.; de Vos, W. H.; Braeckmans, K. Selective labeling of individual neurons in dense cultured networks with nanoparticle-enhanced photoporation. Front. Cell. Neurosc.2018, 12, 80.

    Google Scholar 

  45. Wayteck, L.; Xiong, R. H.; Braeckmans, K.; de Smedt, S. C.; Raemdonck, K. Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells. J. Control. Release2017, 267, 154–162.

    CAS  Google Scholar 

  46. van Audenhove, I.; Boucherie, C.; Pieters, L.; Zwaenepoel, O.; Vanloo, B.; Martens, E.; Verbrugge, C.; Hassanzadeh-Ghassabeh, G.; Vandekerckhove, J.; Cornelissen, M. et al. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J.2014, 28, 1805–1818.

    CAS  Google Scholar 

  47. Bertier, L.; Hebbrecht, T.; Mettepenningen, E.; de Wit, N.; Zwaenepoel, O.; Verhelle, A.; Gettemans, J. Nanobodies targeting cortactin proline rich, helical and actin binding regions downregulate invadopodium formation and matrix degradation in SCC-61 cancer cells. Biomed. Pharmacother.2018, 102, 230–241.

    CAS  Google Scholar 

  48. van den Abbeele, A.; de Clercq, S.; de Ganck, A.; de Corte, V.; van Loo, B.; Soror, S. H.; Srinivasan, V.; Steyaert, J.; Vandekerckhove, J.; Gettemans, J. A llama-derived gelsolin single-domain antibody blocks gelsolin-G-actin interaction. Cell. Mol. Life Sci.2010, 67, 1519–1535.

    Google Scholar 

  49. van Overbeke, W.; Verhelle, A.; Everaert, I.; Zwaenepoel, O.; Vandekerckhove, J.; Cuvelier, C.; Derave, W.; Gettemans, J. Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Mol. Ther.2014, 22, 1768–1778.

    CAS  Google Scholar 

  50. Verhelle, A.; Nair, N.; Everaert, I.; van Overbeke, W.; Supply, L.; Zwaenepoel, O.; Peleman, C.; van Dorpe, J.; Lahoutte, T.; Devoogdt, N. et al. AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Hum. Mol. Genet.2017, 26, 1353–1364.

    CAS  Google Scholar 

  51. Delanote, V.; Vanloo, B.; Catillon, M.; Friederich, E.; Vandekerckhove, J.; Gettemans, J. An alpaca single-domain antibody blocks filopodia formation by obstructing L-plastin-mediated F-actin bundling. FASEB J.2010, 24, 105–118.

    Google Scholar 

  52. van Audenhove, I.; Denert, M.; Boucherie, C.; Pieters, L.; Cornelissen, M.; Gettemans, J. Fascin rigidity and L-plastin flexibility cooperate in cancer cell invadopodia and filopodia. J. Biol. Chem.2016, 291, 9148–9160.

    CAS  Google Scholar 

  53. van Audenhove, I.; van Impe, K.; Ruano-Gallego, D.; de Clercq, S.; de Muynck, K.; Vanloo, B.; Verstraete, H.; Fernández, L. Á.; Gettemans, J. Mapping cytoskeletal protein function in cells by means of nanobodies. Cytoskeleton2013, 70, 604–622.

    CAS  Google Scholar 

  54. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods2012, 9, 676–682.

    CAS  Google Scholar 

Download references

Acknowledgements

K. B. acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (No. 648124) and from the Ghent University Special Research Fund (No. 01B04912) with gratitude. J. L. gratefully acknowledges the financial support from the China Scholarship Council (CSC) (No. 201506750012) and the Ghent University Special Research Fund (No. 01SC1416). T. H. and J. G. acknowledges financial support from the Fonds Wetenschappelijk Onderzoek (No. G.0559.16N) and Ghent University (BOF-GOA) (No. BOF13/GOA010). We would like to thank the Centre for advanced light microscopy at Ghent University (Belgium) for the support during the data acquisition and analysis of the colocalization experiments. We would like to thank Mr. Dominique Deresmes for helping to perform the AFM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Braeckmans.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hebbrecht, T., Brans, T. et al. Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation. Nano Res. 13, 485–495 (2020). https://doi.org/10.1007/s12274-020-2633-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2633-z

Keywords

Navigation