Skip to main content
Log in

Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Endo/lysosomal escape and gene release are two critical bottlenecks in gene delivery. Herein, a novel photo-controllable metal-organic frameworks (MOFs) nanoswitch is rationally designed for enhancing small interfering RNA (siRNA) delivery. One single laser triggers the “off-to-on” switching of MOFs nanocomplexes, inducing significant siRNA release accompanied by rapid MOFs dissociation into protonatable 2-methylimidazalo and osmotic rupturing Zn2+ ions, which cooperatively contribute to remarkable endo/lysosomal rupture (∼ 90%). The simultaneous endo/lysosomal rupture and release enable a high spatio-temporal control on RNA interference for effective cancer therapy. Notably, the “off-to-on” switching also activates fluorescence recovery for real-time monitoring siRNA delivery. The nanoswitch could easily be extended to deliver other therapeutic agents (e.g., DNA, protein, anticancer drug) for overcoming endo/lysosomal entrapment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009, 109, 259–302.

    Article  CAS  Google Scholar 

  2. Lächelt, U.; Wagner, E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem. Rev.2015, 115, 11043–11078.

    Article  Google Scholar 

  3. Wang, J. Q.; Mi, P.; Lin, G.; Wang, Y. X. J.; Liu, G.; Chen, X. Y. Imaging-guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev.2016, 104, 44–60.

    Article  CAS  Google Scholar 

  4. Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov.2009, 8, 129–138.

    Article  CAS  Google Scholar 

  5. Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release2011, 151, 220–228.

    Article  CAS  Google Scholar 

  6. Ma, D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale2014, 6, 6415–6425.

    Article  CAS  Google Scholar 

  7. Dominska, M.; Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci.2010, 123, 1183–1189.

    Article  CAS  Google Scholar 

  8. Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol.2013, 31, 638–646.

    Article  CAS  Google Scholar 

  9. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer2016, 17, 20–37.

    Article  Google Scholar 

  10. Shim, M. S.; Kwon, Y. J. Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine. Biomacromolecules2008, 9, 444–455.

    Article  CAS  Google Scholar 

  11. Shim, M. S.; Kwon, Y. J. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery. Bioconjugate Chem.2009, 20, 488–499.

    Article  CAS  Google Scholar 

  12. Lin, G.; Zhu, W. C.; Yang, L.; Wu, J.; Lin, B. B.; Xu, Y.; Cheng, Z. Z.; Xia, C. C.; Gong, Q. Y.; Song, B. et al. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials2014, 35, 9495–9507.

    Article  CAS  Google Scholar 

  13. Hunter, A. C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv. Drug Deliv. Rev.2006, 58, 1523–1531.

    Article  CAS  Google Scholar 

  14. Chen, H. B.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X. Y.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N. et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J. Am. Chem. Soc.2014, 136, 157–163.

    Article  CAS  Google Scholar 

  15. Yuan, Y. Y.; Zhang, C. J.; Liu, B. A photoactivatable AIE polymer for light-controlled gene delivery: Concurrent Endo/Lysosomal escape and DNA unpacking. Angew. Chem., Int. Ed.2015, 54, 11419–11423.

    Article  CAS  Google Scholar 

  16. Kim, J.; Kim, J.; Jeong, C.; Kim, W. J. Synergistic nanomedicine by combined gene and photothermal therapy. Adv. Drug Deliv. Rev.2016, 98, 99–112.

    Article  CAS  Google Scholar 

  17. Lin, G.; Mi, P.; Chu, C. C.; Zhang, J.; Liu, G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv. Sci.2016, 3, 1600134.

    Article  Google Scholar 

  18. Feng, L. Z.; Yang, X. Z.; Shi, X. Z.; Tan, X. F.; Peng, R.; Wang, J.; Liu, Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small2013, 9, 1989–1997.

    Article  CAS  Google Scholar 

  19. Wang, H. M.; Zhong, L.; Liu, Y.; Xu, X.; Xing, C.; Wang, M.; Bai, S. M.; Lu, C. H.; Yang, H. H. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy. Chem. Commun.2018, 54, 3142–3145.

    Article  CAS  Google Scholar 

  20. Wang, H.; Agarwal, P.; Zhao, S. T.; Yu, J. H.; Lu, X. B.; He, X. M. A near-infrared laser-activated “nanobomb” for breaking the barriers to microRNA delivery. Adv. Mat.2016, 28, 347–355.

    Article  CAS  Google Scholar 

  21. Midoux, P.; Pichon, C.; Yaouanc, J. J.; Jaffrès, P. A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol.2009, 157, 166–178.

    Article  CAS  Google Scholar 

  22. Mishra, S.; Heidel, J. D.; Webster, P.; Davis, M. E. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release2006, 116, 179–191.

    Article  CAS  Google Scholar 

  23. Sun, C. Y.; Qin, C.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Su, Z. M.; Huang, P.; Wang, C. G.; Wang, E. B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans.2012, 41, 6906–6909.

    Article  CAS  Google Scholar 

  24. Zhuang, J.; Kuo, C. H.; Chou, L. Y.; Liu, D. Y.; Weerapana, E.; Tsung, C. K. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano2014, 8, 2812–2819.

    Article  CAS  Google Scholar 

  25. Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc.2018, 140, 143–146.

    Article  CAS  Google Scholar 

  26. Bus, T.; Traeger, A.; Schubert, U. S. The great escape: How cationic polyplexes overcome the endosomal barrier. J. Mater. Chem. B2018, 6, 6904–6918.

    Article  CAS  Google Scholar 

  27. Chu, C. C.; Ren, E.; Zhang, Y. M.; Yu, J. W.; Lin, H. R.; Pang, X.; Zhang, Y.; Liu, H.; Qin, Z. N.; Cheng, Y. et al. Zinc(II)-dipicolylamine coordination nanotheranostics: Toward synergistic nanomedicine by combined photo/gene therapy. Angew. Chem., Int. Ed.2019, 58, 269–272.

    Article  CAS  Google Scholar 

  28. Altieri, D. C. Survivin, cancer networks and pathway-directed drug discovery. Nat. Rev. Cancer2008, 8, 61–70.

    Article  CAS  Google Scholar 

  29. Park, D. H.; Cho, J.; Kwon, O. J.; Yun, C. O.; Choy, J. H. Biodegradable inorganic nanovector: Passive versus active tumor targeting in siRNA transportation. Angew. Chem., Int. Ed.2016, 55, 4582–4586.

    Article  CAS  Google Scholar 

  30. Lin, G.; Zhang, Y.; Zhu, C. Q.; Chu, C. C.; Shi, Y. S.; Pang, X.; Ren, E.; Wu, Y.Y.; Mi, P.; Xia, H. P. et al. Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials2018, 176, 60–70.

    Article  CAS  Google Scholar 

  31. Mi, P.; Cabral, H.; Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mat.2019, 1902604.

  32. Chen, T. T.; Yi, J. T.; Zhao, Y. Y.; Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and Endo-Lysosomal release of native active proteins. J. Am. Chem. Soc.2018, 140, 9912–9920.

    Article  CAS  Google Scholar 

  33. Li, S. D.; Huang, L. Targeted delivery of antisense oigodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm.2006, 3, 579–588.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Jingru Huang and Baoying Xie from Central Laboratory in School of Medicine, Xiamen University for assistance with inductively coupled plasma experiment, laser scanning confocal microscope and data analysis. This work was supported by the Major State Basic Research Development Program of China (No. 2017YFA0205201), the National Natural Science Foundation of China (Nos. 81925019, 81422023, U1705281, and U1505221), the Fundamental Research Funds for the Central Universities (No. 20720190088), and the Program for New Century Excellent Talents in University, China (No. NCET-13-0502). All animal experiments were approved by the Animal Management and Ethics Committee of the Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Electronic Supplementary Material

12274_2019_2606_MOESM1_ESM.pdf

Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Zhang, Y., Zhang, L. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 13, 238–245 (2020). https://doi.org/10.1007/s12274-019-2606-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2606-2

Keywords

Navigation