Skip to main content
Log in

Optomechanical control of stacking patterns of h-BN bilayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Few-layer two-dimensional (2D) materials usually have different (meta)-stable stacking patterns, which have distinct electronic and optical properties. Inspired by optical tweezers, we show that a laser with selected frequency can modify the generalized stacking-fault energy landscape of bilayer hexagonal boron nitride (BBN), by coupling to the slip-dependent dielectric response. Consequently, BBN can be reversibly and barrier-freely switched between its stacking patterns in a controllable way. We simulate the dynamics of the stacking transition with a simplified equation of motion and demonstrate that it happens at picosecond timescale. When one layer of BBN has a nearly-free surface boundary condition, BBN can be locked in its metastable stacking modes for a long time. Such a fast, reversible and non-volatile transition makes BBN a potential media for data storage and optical phase mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guinea, F.; Castro Neto, A. H.; Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 2006, 73, 245426.

    Article  Google Scholar 

  2. Aoki, M.; Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007, 142, 123–127.

    Article  CAS  Google Scholar 

  3. Craciun, M. F.; Russo, S.; Yamamoto, M.; Oostinga, J. B.; Morpurgo, A. F.; Tarucha S. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 2009, 4, 383–388.

    Article  CAS  Google Scholar 

  4. Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 2010, 81, 125304.

    Article  Google Scholar 

  5. Bao, W.; Jing, L.; Velasco, J. Jr.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 2011, 7, 948–952.

    Article  CAS  Google Scholar 

  6. Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.

    Article  Google Scholar 

  7. Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.

    Article  Google Scholar 

  8. Bourrellier, R.; Amato, M.; Galvão Tizei, L. H.; Giorgetti, C.; Gloter, A.; Heggie, M. I.; March, K.; Stéphan, O.; Reining, L.; Kociak, M. et al. Nanometric resolved luminescence in h-BN flakes: Excitons and stacking order. ACS Photonics 2014, 1, 857–862.

    Article  CAS  Google Scholar 

  9. Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    Article  CAS  Google Scholar 

  10. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

    Article  CAS  Google Scholar 

  11. Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    Article  CAS  Google Scholar 

  12. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  13. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  CAS  Google Scholar 

  14. Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

    Article  CAS  Google Scholar 

  15. Eckmann, A.; Park, J.; Yang, H. F.; Elias, D.; Mayorov, A. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Gorbachev, R. V.; Lazzeri, M. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 2013, 13, 5242–5246.

    Article  CAS  Google Scholar 

  16. An, Y. P.; Zhang, M. J.; Wu, D. P.; Wang, T. X.; Jiao, Z. Y.; Xia, C. X.; Fu, Z. M.; Wang, K. The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. Phys. Chem. Chem. Phys. 2016, 18, 27976–27980.

    Article  CAS  Google Scholar 

  17. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in twodimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    Article  CAS  Google Scholar 

  18. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

    Article  CAS  Google Scholar 

  19. Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266.

    Article  CAS  Google Scholar 

  20. Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773–786.

    Article  Google Scholar 

  21. Ogata, S.; Li, J.; Yip, S. Ideal pure shear strength of aluminum and copper. Science 2002, 298, 807–811.

    Article  CAS  Google Scholar 

  22. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  23. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  24. Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 2010, 4, 1299–1304.

    Article  CAS  Google Scholar 

  25. Zhou, J.; Xu, H. W.; Li, Y. F.; Jaramillo, R.; Li, J. Opto-mechanics driven fast martensitic transition in two-dimensional materials. Nano Lett. 2018, 18, 7794–7800.

    Article  CAS  Google Scholar 

  26. Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.

    Article  Google Scholar 

  27. Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  32. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  33. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  34. Hedin, L. New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796–A823.

    Article  Google Scholar 

  35. Hybertsen, M. S.; Louie, S. G. First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 1985, 55, 1418–1421.

    Article  CAS  Google Scholar 

  36. Salpeter, E. E.; Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 1951, 84, 1232–1242.

    Google Scholar 

  37. Onida, G.; Reining, L.; Rubio, A. Electronic excitations: Density-functional versus many-body green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Office of Naval Research MURI through grant #N00014-17-1-2661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhou, J., Li, Y. et al. Optomechanical control of stacking patterns of h-BN bilayer. Nano Res. 12, 2634–2639 (2019). https://doi.org/10.1007/s12274-019-2500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2500-y

Keywords

Navigation