Skip to main content
Log in

Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

When quantum emitters and plasmonic nanoparticles are in close vicinity, the energy exchange, termed as plasmon-exciton coupling, can make the absorption and emission behavior of the hybrid structure very different from those of the two constituents alone. The coupling strength between the two constituents highly depends on how the hybrid structure is constructed. As a result, a diverse range of coupling effect arise including plasmon induced fluorescence quenching/enhancing (weak coupling), Fano interference (intermediate coupling), Rabi-splitting and lasing (strong coupling). The emergence of different coupling behavior can be controlled by the different combinations of quantum emitters and plasmonic nanoparticles as well as the spatial arrangement of the individual components. Colloidal assembly/synthesis methods are essentially delicate strategies that can build the hybrid nanostructures with nanometer precision and allow for large-scale processing. In this review, we discuss the theoretical models that apply to different coupling behaviors, the optical properties of the hybrid systems, and the advancement of colloidal methods to manipulate the plasmon-exciton in the hybrid structures. We also provide perspectives on the challenges and future directions of the research in coupled plasmon-exciton nanosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Article  Google Scholar 

  2. Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

    Article  Google Scholar 

  3. West, J. L.; Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng. 2003, 5, 285–292.

    Article  Google Scholar 

  4. Yang, A. K.; Odom, T. W. Breakthroughs in photonics 2014: Advances in plasmonic nanolasers. IEEE Photonics J. 2015, 7, 0700606.

    Google Scholar 

  5. Nabika, H.; Takase, M.; Nagasawa, F.; Murakoshi, K. Toward plasmon-induced photoexcitation of molecules. J. Phys. Chem. Lett. 2010, 1, 2470–2487.

    Article  Google Scholar 

  6. Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.

    Article  Google Scholar 

  7. Zhang, P.; Protsenko, I.; Sandoghdar, V.; Chen, X. W. A single-emitter gain medium for bright coherent radiation from a plasmonic nanoresonator. ACS Photonics. 2017, 4, 2738–2744.

    Article  Google Scholar 

  8. Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202.

    Article  Google Scholar 

  9. Achermann, M. Exciton–plasmon interactions in metal–semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.

    Article  Google Scholar 

  10. Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.

    Article  Google Scholar 

  11. Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501.

    Article  Google Scholar 

  12. Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iati, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002.

    Article  Google Scholar 

  13. Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.; Lee, J.; Maier, S. A.; Kim, M. S. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340.

    Article  Google Scholar 

  14. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6.

    Article  Google Scholar 

  15. Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002, 2, 1449–1452.

    Article  Google Scholar 

  16. Purcell, E. M.; Torrey, H. C.; Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 37–38.

    Article  Google Scholar 

  17. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics. 2015, 9, 427–435.

    Article  Google Scholar 

  18. Rodriguez, S. R. K.; Feist, J.; Verschuuren, M. A.; Vidal, F. J. G.; Rivas, J. G. Thermalization and cooling of plasmon-exciton polaritons: Towards quantum condensation. Phys. Rev. Lett. 2013, 111, 166802.

    Article  Google Scholar 

  19. Nan, F.; Ding, S. J.; Ma, L.; Cheng, Z. Q.; Zhong, Y. T.; Zhang, Y. F.; Qiu, Y. H.; Li, X. G.; Zhou, L.; Wang, Q. Q. Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 2016, 8, 15071–15078.

    Article  Google Scholar 

  20. Harris, S. E.; Field, J. E.; Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 1990, 64, 1107–1110.

    Article  Google Scholar 

  21. Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.

    Article  Google Scholar 

  22. Christopoulos, S.; Von Högersthal G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.

    Article  Google Scholar 

  23. Kolaric, B.; Maes, B.; Clays, K.; Durt, T.; Caudano, Y. Molding molecular and material properties by strong light-matter coupling. arXiv preprint arXiv1802.06029, 2018.

    Google Scholar 

  24. Hoang, T. B.; Akselrod, G. M.; Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2015, 16, 270–275.

    Article  Google Scholar 

  25. Groß, H.; Hamm, J. M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906.

    Article  Google Scholar 

  26. Mundoor, H.; Sheetah, G. H.; Park, S.; Ackerman, P. J.; Smalyukh, I. I.; van de Lagemaat, J. Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect. ACS Nano. 2018, 12, 2580–2590.

    Article  Google Scholar 

  27. Liu, N. G.; Prall, B. S.; Klimov, V. I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 2006, 128, 15362–15363.

    Article  Google Scholar 

  28. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736–3827.

    Article  Google Scholar 

  29. Wang, Y.; Chen, G.; Yang, M. X.; Silber, G.; Xing, S. X.; Tan, L. H.; Wang, F.; Feng, Y. H; Liu, X. G; Li, S. Z. et al. A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat. Commun. 2010, 1, 87.

    Article  Google Scholar 

  30. Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 2017, 5, 24–42.

    Article  Google Scholar 

  31. Hümmer, T.; García-Vidal, F. J.; Martín-Moreno, L.; Zueco, D. Weak and strong coupling regimes in plasmonic QED. Phys. Rev. B 2013, 87, 115419.

    Article  Google Scholar 

  32. Hartsfield, T.; Chang, W. S.; Yang, S. C.; Ma, T.; Shi, J. W.; Sun, L. Y.; Shvets, G.; Link, S.; Li, X. Q. Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. Proc. Natl. Acad. Sci. USA 2015, 112, 12288–12292.

    Article  Google Scholar 

  33. Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.

    Article  Google Scholar 

  34. Faucheaux, J. A.; Fu, J. Y.; Jain, P. K. Unified theoretical framework for realizing diverse regimes of strong coupling between plasmons and electronic transitions. J. Phys. Chem. C 2014, 118, 2710–2717.

    Article  Google Scholar 

  35. Yang, Z. J.; Antosiewicz, T. J.; Shegai, T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt. Exp. 2016, 24, 20373–20381.

    Article  Google Scholar 

  36. Zengin, G; Wersäll, M.; Nilsson, S.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 2015, 114, 157401.

    Article  Google Scholar 

  37. Leng, H. X.; Szychowski, B.; Daniel, M. C.; Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 2018, 9, 4012.

    Article  Google Scholar 

  38. Li, X. G.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Plasmon–exciton coupling in complex systems. Adv. Opt. Mater. 2018, 6, 1800275.

    Article  Google Scholar 

  39. Jennings, T. L.; Singh, M. P.; Strouse, G. F. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: Probing NSET validity. J. Am. Chem. Soc. 2006, 128, 5462–5467.

    Article  Google Scholar 

  40. Breshike, C. J.; Riskowski, R. A.; Strouse, G. F. Leaving Förster resonance energy transfer behind: Nanometal surface energy transfer predicts the size-enhanced energy coupling between a metal nanoparticle and an emitting dipole. J. Phys. Chem. C 2013, 117, 23942–23949.

    Article  Google Scholar 

  41. Sen, T.; Patra, A. Recent advances in energy transfer processes in gold-nanoparticle-based assemblies. J. Phys. Chem. C 2012, 116, 17307–17317.

    Article  Google Scholar 

  42. Li, M.; Cushing, S. K.; Wang, Q. Y.; Shi, X. D.; Hornak, L. A.; Hong, Z. L.; Wu, N. Q. Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2011, 2, 2125–2129.

    Article  Google Scholar 

  43. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

    Article  Google Scholar 

  44. Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano. 2014, 8, 8392–8406.

    Article  Google Scholar 

  45. Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano. 2009, 3, 744–752.

    Article  Google Scholar 

  46. Ayala-Orozco, C., Liu, J. G.; Knight, M. W.; Wang, Y. M.; Day, J. K.; Nordlander, P.; Halas, N. J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014, 14, 2926–2933.

    Article  Google Scholar 

  47. Dey, S.; Zhou, Y. D.; Sun, Y. L.; Jenkins, J. A.; Kriz, D.; Suib, S. L.; Chen, O.; Zou, S. L.; Zhao, J. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Nanoscale 2018, 10, 1038–1046.

    Article  Google Scholar 

  48. Wax, T. J.; Dey, S.; Chen, S. T.; Luo, Y.; Zou, S. L.; Zhao, J. Excitation wavelength-dependent photoluminescence decay of hybrid gold/quantum dot nanostructures. ACS Omega 2018, 3, 14151–14156.

    Article  Google Scholar 

  49. Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823.

    Article  Google Scholar 

  50. Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. Chemlnform abstract: J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem., Int. Ed. 2011, 50, 3376–3410.

    Article  Google Scholar 

  51. Stockman, M. I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106.

    Article  Google Scholar 

  52. Balci, S.; Kucukoz, B.; Balci, O.; Karatay, A.; Kocabas, C.; Yaglioglu, G. Tunable plexcitonic nanoparticles: A model system for studying plasmon-exciton interaction from the weak to the ultrastrong coupling regime. ACS Photonics 2016, 3, 2010–2016.

    Article  Google Scholar 

  53. Wersall, M.; Cuadra, J.; Antosiewicz, T. J.; Balci, S.; Shegai, T. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 2017, 17, 551–558.

    Article  Google Scholar 

  54. Liu, R. M.; Zhou, Z. K.; Yu, Y. C.; Zhang, T. W.; Wang, H.; Liu, G. H.; Wei, Y. M.; Chen, H. J.; Wang, X. H. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 2017, 118, 237401.

    Article  Google Scholar 

  55. Zengin, G.; Johansson, G.; Johansson, P.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 2013, 3, 3074.

    Article  Google Scholar 

  56. Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286.

    Article  Google Scholar 

  57. Ming, T.; Zhao, L.; Yang, Z.; Chen, H. J.; Sun, L. D.; Wang, J. F.; Yan, C. H. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896–3903.

    Article  Google Scholar 

  58. Nepal, D.; Drummy, L. F.; Biswas, S.; Park, K.; Vaia, R. A. Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano. 2013, 7, 9064–9074.

    Article  Google Scholar 

  59. Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.

    Article  Google Scholar 

  60. Samanta, A.; Zhou, Y. D.; Zou, S. L.; Yan, H.; Liu, Y. Fluorescence quenching of quantum dots by gold nanoparticles: A potential long range spectroscopic ruler. Nano Lett. 2014, 14, 5052–5057.

    Article  Google Scholar 

  61. Zhang, T. S.; Gao, N. Y.; Li, S.; Lang, M. J.; Xu, Q. H. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. J. Phys. Chem. Lett. 2015, 6, 2043–2049.

    Article  Google Scholar 

  62. Roller, E. M.; Argyropoulos, C.; Högele, A.; Liedl, T.; Pilo-Pais, M. Plasmon-exciton coupling using DNA templates. Nano Lett. 2016, 16, 5962–5966.

    Article  Google Scholar 

  63. Ma, X. D.; Tan, H.; Kipp, T.; Mews, A. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett. 2010, 10, 4166–4174.

    Article  Google Scholar 

  64. Ji, B. T.; Giovanelli, E.; Habert, B.; Spinicelli, P.; Nasilowski, M.; Xu, X. Z.; Lequeux, N.; Hugonin, J. P.; Marquier, F.; Greffet, J. J. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 2015, 10, 170–175.

    Article  Google Scholar 

  65. Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

    Article  Google Scholar 

  66. Karan, N. S.; Keller, A. M.; Sampat, S.; Roslyak, O.; Arefin, A.; Hanson, C. J.; Casson, J. L.; Desireddy, A.; Ghosh, Y.; Piryatinski, A. et al. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry. Chem. Sci. 2015, 6, 2224–2236.

    Article  Google Scholar 

  67. Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1, 5–33.

    Article  Google Scholar 

  68. Geddes, C. D.; Cao, H. S.; Gryczynski, I.; Gryczynski, Z.; Fang, J. Y.; Lakowicz, J. R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 2003, 107, 3443–3449.

    Article  Google Scholar 

  69. Bauch, M.; Toma, K.; Toma, M.; Zhang, Q. W.; Dostalek, J. Plasmonenhanced fluorescence biosensors: A review. Plasmonics. 2014, 9, 781–799.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supported by NSF CAREER Grant (CHE 1554800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhao, J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Res. 12, 2164–2171 (2019). https://doi.org/10.1007/s12274-019-2390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2390-z

Keywords

Navigation