Skip to main content
Log in

Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy. While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte, a detailed understanding of this interface is still missing. For instance, few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount. Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system. Two types of interfaces were examined, one with GaN nanowires as a protection layer and one without. It was found that when GaN was present, higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and, hence, hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages. In the absence of the protection layer, by stark contrast, increased Pt loading exhibited no measurable influence on the interface energetics, and the main difference was observed only in the hydrogen evolution kinetics. The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems, especially concerning the role of catalysts and protection layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

    Article  Google Scholar 

  2. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002.

    Article  Google Scholar 

  3. He, Y. M.; Wang, D. W. Toward practical solar hydrogen production. Chem 2018, 4, 405–408.

    Article  Google Scholar 

  4. He, Y. M.; Hamann, T.; Wang, D. W. Thin film photoelectrodes for solar water splitting. Chem. Soc. Rev., in press, DOI: 10.1039/C8CS00868J.

  5. Thorne, J. E.; Li, S.; Du, C.; Qin, G. W.; Wang, D. W. Energetics at the surface of photoelectrodes and its influence on the photoelectrochemical properties. J. Phys. Chem. Lett. 2015, 6, 4083–4088.

    Article  Google Scholar 

  6. Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. 2013, 52, 12692–12695.

    Article  Google Scholar 

  7. Du, C.; Zhang, M.; Jang, J.-W.; Liu, Y.; Liu, G.-Y.; Wang, D. W. Observation and alteration of surface states of hematite photoelectrodes. J. Phys. Chem. C 2014, 118, 17054–17059.

    Article  Google Scholar 

  8. Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 2014, 13, 81–86.

    Article  Google Scholar 

  9. Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Hamann, T. W.; Boettcher, S. W. Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 2017, 3, 1015–1025.

    Article  Google Scholar 

  10. Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Oener, S. Z.; Hamann, T. W.; Boettcher, S. W. Catalyst deposition on photoanodes: The roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett. 2018, 3, 961–969.

    Article  Google Scholar 

  11. Nellist, M. R.; Laskowski, F. A. L.; Qiu, J. J.; Hajibabaei, H.; Sivula, K.; Hamann, T. W.; Boettcher, S. W. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 2018, 3, 46–52.

    Article  Google Scholar 

  12. Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133, 14868–14871.

    Article  Google Scholar 

  13. Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 2012, 109, 15640–15645.

    Article  Google Scholar 

  14. Pesci, F. M.; Cowan, A. J.; Alexander, B. D.; Durrant, J. R.; Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2011, 2, 1900–1903.

    Article  Google Scholar 

  15. Carroll, G. M.; Gamelin, D. R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 2016, 4, 2986–2994.

    Article  Google Scholar 

  16. Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J. Am. Chem. Soc. 2012, 134, 16693–16700.

    Article  Google Scholar 

  17. Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396–2405.

    Article  Google Scholar 

  18. Cummings, C. Y.; Marken, F.; Peter, L. M.; Tahir, A. A.; Wijayantha, K. G. U. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 2012, 48, 2027–2029.

    Article  Google Scholar 

  19. Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712–3719.

    Article  Google Scholar 

  20. Li, W.; He, D.; Sheehan, S. W.; He, Y. M.; Thorne, J. E.; Yao, X. H.; Brudvig, G. W.; Wang, D. W. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ. Sci. 2016, 9, 1794–1802.

    Article  Google Scholar 

  21. Thorne, J. E.; Jang, J.-W.; Liu, E. Y.; Wang, D. W. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 2016, 7, 3347–3354.

    Article  Google Scholar 

  22. He, Y. M.; Ma, P. Y.; Zhu, S. S.; Liu, M. D.; Dong, Q.; Espano, J.; Yao, X. H.; Wang, D. W. Photo-induced performance enhancement of tantalum nitride for solar water oxidation. Joule 2017, 1, 831–842.

    Article  Google Scholar 

  23. Thorne, J. E.; Zhao, Y. Y.; He, D.; Fan, S. Z.; Vanka, S.; Mi, Z. T.; Wang, D. W. Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 29653–29659.

    Article  Google Scholar 

  24. Gao, Y.; Hamann, T. W. Quantitative hole collection for photoelectrochemical water oxidation with CuWO4. Chem. Commun. 2017, 53, 1285–1288.

    Article  Google Scholar 

  25. Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F.-Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.

    Article  Google Scholar 

  26. Vanka, S.; Arca, E.; Cheng, S. B.; Sun, K.; Botton, G. A.; Teeter, G.; Mi, Z. T. High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett. 2018, 18, 6530–6537.

    Article  Google Scholar 

  27. Fan, S. Z.; AlOtaibi, B.; Woo, S. Y.; Wang, Y. J.; Botton, G. A.; Mi, Z. T. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett. 2015, 15, 2721–2726.

    Article  Google Scholar 

  28. Wang, Y. C.; Fan, S. Z.; AlOtaibi, B.; Wang, Y. J.; Li, L.; Mi, Z. T. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chem.—Eur. J. 2016, 22, 8809–8813.

    Article  Google Scholar 

  29. Cheng, Q.; Fan, W.; He, Y.; Ma, P.; Vanka, S.; Fan, S.; Mi, Z.; Wang, D. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 2017, 29, 1700312.

    Article  Google Scholar 

  30. Chu, S.; Ou, P. F.; Ghamari, P.; Vanka, S.; Zhou, B. W.; Shih, I.; Song, J.; Mi, Z. T. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869–7877.

    Article  Google Scholar 

  31. Yuan, G. B.; Aruda, K.; Zhou, S.; Levine, A.; Xie, J.; Wang, D. W. Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem., Int. Ed. 2011, 50, 2334–2338.

    Article  Google Scholar 

  32. Liu, R.; Yuan, G. B.; Joe, C. L.; Lightburn, T. E.; Tan, K. L.; Wang, D. W. Silicon nanowires as photoelectrodes for carbon dioxide fixation. Angew. Chem., Int. Ed. 2012, 51, 6709–6712.

    Article  Google Scholar 

  33. Liu, R.; Stephani, C.; Han, J. J.; Tan, K. L.; Wang, D. W. Silicon nanowires show improved performance as photocathode for catalyzed carbon dioxide photofixation. Angew. Chem., Int. Ed. 2013, 52, 4225–4228.

    Article  Google Scholar 

  34. Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem., Int. Ed. 2013, 52, 11119–11123.

    Article  Google Scholar 

  35. Kemppainen, E.; Bodin, A.; Sebok, B.; Pedersen, T.; Seger, B.; Mei, B.; Bae, D.; Vesborg, P. C. K.; Halme, J.; Hansen, O. et al. Scalability and feasibility of photoelectrochemical H2 evolution: The ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 2015, 8, 2991–2999.

    Article  Google Scholar 

  36. Ponomarev, E. A.; Peter, L. M. A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J. Electroanal. Chem. 1995, 396, 219–226.

    Article  Google Scholar 

  37. Peter, L. M.; Ponomarev, E. A.; Fermín, D. J. Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms. J. Electroanal. Chem. 1997, 427, 79–96.

    Article  Google Scholar 

  38. Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angew. Chem., Int. Ed. 2014, 53, 13493–13497.

    Article  Google Scholar 

  39. Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 2015, 8, 16–25.

    Article  Google Scholar 

  40. Lewis, N. S. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg. Chem. 2005, 44, 6900–6911.

    Article  Google Scholar 

  41. Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem., Int. Ed. 2014, 53, 7295–7299.

    Article  Google Scholar 

  42. Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675–688.

    Article  Google Scholar 

  43. Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.

    Article  Google Scholar 

  44. Kang, D.; Young, J. L.; Lim, H.; Klein, W. E.; Chen, H. D.; Xi, Y. Z.; Gai, B. J.; Deutsch, T. G.; Yoon, J. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2017, 2, 17043.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge research support from the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Award Number DE-EE0008086 XPS and TEM was performed at the Center for Nanoscale Systems (CNS) in Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunwei Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Vanka, S., Gao, T. et al. Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Res. 12, 2378–2384 (2019). https://doi.org/10.1007/s12274-019-2346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2346-3

Keywords

Navigation