Skip to main content
Log in

Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elesclomol (ELC) is an anticancer drug inducing mitochondria cytotoxicity through reactive oxygen species. Here, for the first time, we encapsulate the poorly water soluble ELC in monoolein-based cubosomes stabilized with Pluronic F127. Cellular uptake and nanocarrier accumulation close to the mitochondria with sub-micrometer distance is identified via three-dimensional (3D) confocal microscopy and edge-to-edge compartment analysis. To monitor the therapeutic effect of the ELC nanocarrier, we apply for the first time, label-free time-lapse multi-photon fluorescence lifetime imaging microscopy (MP-FLIM) to track NAD(P)H cofactors with sub-cellular resolution on live cells exposed to an anticancer nanocarrier. Improved in vitro cytotoxicity is verified when loading the pre-complexed ELC with copper (ELC-Cu). Importantly, for equivalent copper concentration, cubosomes loaded with ELC-Cu show higher cytotoxicity compared to the free drug. The novel nanocarrier shows promising features for systemic ELC-Cu administration, and furthermore we establish the MP-FLIM technique for the assessment of anticancer drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9–15.

    Article  Google Scholar 

  2. Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447–464.

    Article  Google Scholar 

  3. Raza, M. H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol. 2017, 143, 1789–1809.

    Article  Google Scholar 

  4. Modica-Napolitano, J. S.; Weissig, V. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int. J. Mol. Sci. 2015, 16, 17394–17421.

    Article  Google Scholar 

  5. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ros-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.

    Article  Google Scholar 

  6. Berkenblit, A.; Eder, J. P. Jr.; Ryan, D. P.; Seiden, M. V.; Tatsuta, N.; Sherman, M. L.; Dahl, T. A.; Dezube, B. J.; Supko, J. G. Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin. Cancer Res. 2007, 13, 584–590.

    Article  Google Scholar 

  7. O’Day, S.; Gonzalez, R.; Lawson, D.; Weber, R.; Hutchins, L.; Anderson, C.; Haddad, J.; Kong, S.; Williams, A.; Jacobson, E. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 2009, 27, 5452–5458.

    Article  Google Scholar 

  8. Hedley, D.; Shamas-Din, A.; Chow, S.; Sanfelice, D.; Schuh, A. C.; Brandwein, J. M.; Seftel, M. D.; Gupta, V.; Yee, K. W. L.; Schimmer, A. D. A phase I study of elesclomol sodium in patients with acute myeloid leukemia. Leuk. Lymphoma 2016, 57, 2437–2440.

    Article  Google Scholar 

  9. Nagai, M.; Vo, N. H.; Shin Ogawa, L.; Chimmanamada, D.; Inoue, T.; Chu, J.; Beaudette-Zlatanova, B. C.; Lu, R. Z.; Blackman, R. K.; Barsoum, J. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med. 2012, 52, 2142–2150.

    Article  Google Scholar 

  10. Blackman, R. K.; Cheung-Ong, K.; Gebbia, M.; Proia, D. A.; He, S. Q.; Kepros, J.; Jonneaux, A.; Marchetti, P.; Kluza, J.; Rao, P. E. et al. Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 2012, 7, e29798.

    Article  Google Scholar 

  11. Kirshner, J. R.; He, S. Q.; Balasubramanyam, V.; Kepros, J.; Yang, C. Y.; Zhang, M.; Du, Z. J.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 2008, 7, 2319–2327.

    Article  Google Scholar 

  12. Hasinoff, B. B.; Wu, X.; Yadav, A. A.; Patel, D.; Zhang, H.; Wang, D. S.; Chen, Z. S.; Yalowich, J. C. Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochem. Pharmacol. 2015, 93, 266–276.

    Article  Google Scholar 

  13. Hasinoff, B. B.; Yadav, A. A.; Patel, D.; Wu, X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem. 2014, 137, 22–30.

    Article  Google Scholar 

  14. Yadav, A. A.; Patel, D.; Wu, X.; Hasinoff, B. B. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J. Inorg. Biochem. 2013, 126, 1–6.

    Article  Google Scholar 

  15. Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789–801.

    Article  Google Scholar 

  16. Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

    Article  Google Scholar 

  17. Larsson, K. Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci. 2000, 5, 64–69.

    Article  Google Scholar 

  18. Demurtas, D.; Guichard, P.; Martiel, I.; Mezzenga, R.; Hébert, C.; Sagalowicz, L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat. Commun. 2015, 6, 8915.

    Article  Google Scholar 

  19. Seddon, J. M.; Templer, R. H. Cubic phases of self-assembled amphiphilic aggregates. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 1993, 344, 377–401.

    Google Scholar 

  20. Oliveira, A. C. N.; Raemdonck, K.; Martens, T.; Rombouts, K.; Simón-Vázquez, R.; Botelho, C.; Lopes, I.; Lúcio, M.; González-Fernández, Á.; Real Oliveira, M. E. C. D. et al. Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta Biomater. 2015, 25, 216–229.

    Article  Google Scholar 

  21. Spicer, P. T.; Hayden, K. L.; Lynch, M. L.; Ofori-Boateng, A.; Burns, J. L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 2001, 17, 5748–5756.

    Article  Google Scholar 

  22. Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A magic lipid? Phys. Chem. Chem. Phys. 2011, 13, 3004–3021.

    Article  Google Scholar 

  23. Yaghmur, A.; Glatter, O. Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci. 2009, 147–148, 333–342.

    Article  Google Scholar 

  24. Zhai, J. L.; Tran, N.; Sarkar, S.; Fong, C.; Mulet, X.; Drummond, C. J. Self-assembled lyotropic liquid crystalline phase behavior of monooleincapric acid-phospholipid nanoparticulate systems. Langmuir 2017, 33, 2571–2580.

    Article  Google Scholar 

  25. Azmi, I. D.; Moghimi, S. M.; Yaghmur, A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther. Deliv. 2015, 6, 1347–1364.

    Article  Google Scholar 

  26. Rizwan, S. B.; Assmus, D.; Boehnke, A.; Hanley, T.; Boyd, B. J.; Rades, T.; Hook, S. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur. J. Pharm. Biopharm. 2011, 79, 15–22.

    Article  Google Scholar 

  27. Nazaruk, E.; Majkowska-Pilip, A.; Bilewicz, R. Lipidic cubic-phase nanoparticles—Cubosomes for efficient drug delivery to cancer cells. Chempluschem 2017, 82, 570–575.

    Article  Google Scholar 

  28. Mat Azmi, I. D.; Nilsson, C.; Stürup, S.; Østergaard, J.; Gammelgaard, B.; Moghimi, S. M.; Urtti, A. Characterization of cisplatin-loaded cubosomes and hexosomes: Effect of mixing with human plasma. J. Geriatr. Oncol. 2013, 4, S62.

    Article  Google Scholar 

  29. Nasr, M.; Ghorab, M. K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B 2015, 5, 79–88.

    Article  Google Scholar 

  30. Maulucci, G.; Bacic, G.; Bridal, L.; Schmidt, H. H. H. W.; Tavitian, B.; Viel, T.; Utsumi, H.; Yalçin, A. S.; De Spirito, M. Imaging reactive oxygen species-induced modifications in living systems. Antioxid. Redox Signal. 2016, 24, 939–958.

    Article  Google Scholar 

  31. Blacker, T. S.; Duchen, M. R. Investigating mitochondrial redox state using nadh and NADPH autofluorescence. Free Radic. Biol. Med. 2016, 100, 53–65.

    Article  Google Scholar 

  32. Wang, Z. W.; Zheng, Y. P.; Zhao, D. Q.; Zhao, Z. W.; Liu, L. X.; Pliss, A.; Zhu, F. Q.; Liu, J.; Qu, J. L.; Luan, P. Applications of fluorescence lifetime imaging in clinical medicine. J. Innov. Opt. Health Sci. 2018, 11, 1830001.

    Article  Google Scholar 

  33. Kolenc, O. I.; Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal., in press, https://doi.org/10.1089/ars.2017.7451.

  34. Blacker, T. S.; Mann, Z. F.; Gale, J. E.; Ziegler, M.; Bain, A. J.; Szabadkai, G.; Duchen, M. R. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 2014, 5, 3936.

    Article  Google Scholar 

  35. Lakowicz, J. R.; Szmacinski, H.; Nowaczyk, K.; Johnson, M. L. Fluorescence lifetime imaging of free and protein-bound NADH. Proc. Natl. Acad. Sci. USA 1992, 89, 1271–1275.

    Article  Google Scholar 

  36. Alexiev, U.; Volz, P.; Boreham, A.; Brodwolf, R. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 2017, 116, 111–124.

    Article  Google Scholar 

  37. Lin, L. L.; Grice, J. E.; Butler, M. K.; Zvyagin, A. V.; Becker, W.; Robertson, T. A.; Soyer, H. P.; Roberts, M. S.; Prow, T. W. Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm. Res. 2011, 28, 2920–2930.

    Article  Google Scholar 

  38. Walsh, A. J.; Cook, R. S.; Sanders, M. E.; Aurisicchio, L.; Ciliberto, G.; Arteaga, C. L.; Skala, M. C. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014, 74, 5184–5194.

    Article  Google Scholar 

  39. Shirmanova, M. V.; Druzhkova, I. N.; Lukina, M. M.; Dudenkova, V. V.; Ignatova, N. I.; Snopova, L. B.; Shcheslavskiy, V. I.; Belousov, V. V.; Zagaynova, E. V. Chemotherapy with cisplatin: Insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci. Rep. 2017, 7, 8911.

    Article  Google Scholar 

  40. Alam, S. R.; Wallrabe, H.; Svindrych, Z.; Chaudhary, A. K.; Christopher, K. G.; Chandra, D.; Periasamy, A. Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: An NADH, FAD and tryptophan FLIM assay. Sci. Rep. 2017, 7, 10451.

    Article  Google Scholar 

  41. Shah, A. T.; Diggins, K. E.; Walsh, A. J.; Irish, J. M.; Skala, M. C. In vivo autofluorescence imaging of tumor heterogeneity in response to treatment. Neoplasia 2015, 17, 862–870.

    Article  Google Scholar 

  42. Tilley, A. J.; Drummond, C. J.; Boyd, B. J. Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. J. Colloid Interface Sci. 2013, 392, 288–296.

    Article  Google Scholar 

  43. Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems—A review (part 2). Trop. J. Pharm. Res. 2013, 12, 265–273.

    Google Scholar 

  44. Yingchoncharoen, P.; Kalinowski, D. S.; Richardson, D. R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016, 68, 701–787.

    Article  Google Scholar 

  45. Choi, K. Y.; Silvestre, O. F.; Huang, X. L.; Min, K. H.; Howard, G. P.; Hida, N.; Jin, A. J.; Carvajal, N.; Lee, S. W.; Hong, J. I. et al. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS Nano 2014, 8, 4559–4570.

    Article  Google Scholar 

  46. Rampersad, S. N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360.

    Article  Google Scholar 

  47. Hinton, T. M.; Grusche, F.; Acharya, D.; Shukla, R.; Bansal, V.; Waddington, L. J.; Monaghan, P.; Muir, B. W. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol. Res. 2014, 3, 11–22.

    Article  Google Scholar 

  48. Tran, N.; Mulet, X.; Hawley, A. M.; Hinton, T. M.; Mudie, S. T.; Muir, B. W.; Giakoumatos, E. C.; Waddington, L. J.; Kirby, N. M.; Drummond, C. J. Nanostructure and cytotoxicity of self-assembled monoolein–capric acid lyotropic liquid crystalline nanoparticles. RSC Adv. 2015, 5, 26785–26795.

    Article  Google Scholar 

  49. Zhai, J. L.; Suryadinata, R.; Luan, B.; Tran, N.; Hinton, T. M.; Ratcliffe, J.; Hao, X. J.; Drummond, C. J. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discuss. 2016, 191, 545–563.

    Article  Google Scholar 

  50. Zhang, S. L.; Gao, H. J.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015, 9, 8655–8671.

    Article  Google Scholar 

  51. Liu, Y.; Workalemahu, B.; Jiang, X. Y. The effects of physicochemical properties of nanomaterials on their cellular uptake in vitro and in vivo. Small 2017, 13, 1701815.

    Article  Google Scholar 

  52. Gilles, J. F.; Dos Santos, M.; Boudier, T.; Bolte, S.; Heck, N. DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis. Methods 2017, 115, 55–64.

    Article  Google Scholar 

  53. Rosa, A.; Murgia, S.; Putzu, D.; Meli, V.; Falchi, A. M. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chem. Phys. Lipids 2015, 191, 96–105.

    Article  Google Scholar 

  54. Rambold, A. S.; Cohen, S.; Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32, 678–692.

    Article  Google Scholar 

  55. Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189.

    Article  Google Scholar 

  56. Falchi, A. M.; Rosa, A.; Atzeri, A.; Incani, A.; Lampis, S.; Meli, V.; Caltagirone, C.; Murgia, S. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicol. Res. 2015, 4, 1025–1036.

    Article  Google Scholar 

  57. Ying, W. H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal. 2008, 10, 179–206.

    Article  Google Scholar 

  58. Vinogradov, A. D.; Grivennikova, V. G. Oxidation of NADH and ROS production by respiratory complex I. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 863–871.

    Article  Google Scholar 

  59. Chaderjian, W. B.; Chin, E. T.; Harris, R. J.; Etcheverry, T. M. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol. Prog. 2005, 21, 550–553.

    Article  Google Scholar 

  60. Lin, M.; Wang, D. D.; Liu, S. W.; Huang, T. T.; Sun, B.; Cui, Y.; Zhang, D. Q.; Sun, H. C.; Zhang, H.; Sun, H. et al. Cupreous complex-loaded chitosan nanoparticles for photothermal therapy and chemotherapy of oral epithelial carcinoma. ACS Appl. Mater. Interfaces 2015, 7, 20801–20812.

    Article  Google Scholar 

  61. Wellcome Sanger Institute. Genomics of Drug Sensitivity in Cancer [Online]. http://www.cancerrxgene.org/translation/Drug/1031 (accessed Dec 6, 2017)

  62. Enderlein, J.; Erdmann, R. Fast fitting of multi-exponential decay curves. Opt. Commun. 1997, 134, 371–378.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded partly by the Comissão de Coordenação e Desenvolvimento Regional do Norte (CCDR-N) project “Nanotechnology based functional solutions” (No. NORTE01-0145-FEDER-000019). O. F. S. received a Marie Curie fellowship, EU-EC COFUND program “NanoTRAINforGrowth” (No. 600375). The authors wish to thank Enrique Carbo-Argibay (INL) and Oliver Schraidt (INL) for the assistance with the cryo-TEM imaging, and Edite Figueiras (INL) for technical support related to the FLIM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana B. Nieder.

Electronic supplementary material

12274_2018_2231_MOESM1_ESM.pdf

Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, A.R., Silvestre, O.F., Maibohm, C. et al. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res. 12, 991–998 (2019). https://doi.org/10.1007/s12274-018-2231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2231-5

Keywords

Navigation