Skip to main content
Log in

Organic-semiconductor: Polymer-electret blends for high-performance transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As compared with polymer semiconductors, solution-processed small-molecule semiconductors usually have poorer film-formation properties, which induces wide variations in device performance in terms of mobility and threshold voltage, thus severely limiting their commercial applications. In this work, we propose an easily accessible method to improve the performance and reduce the variability of small-molecule organic field-effect transistors (OFETs) by blending organic semiconductors with an insulator polymer, which is subsequently post-treated by gate stress to generate an electret. By blending the organic semiconductor 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT) with the insulator polystyrene, uniform transport layers with vertically phase segregated morphology are obtained, from which the mobility and threshold voltage of OFETs are largely manipulated. The OFETs exhibit field-effect mobilities as high as 7.5 cm2·V−1·s−1 with an on/off ratio exceeding 106 in ambient conditions. This double-layer structure provides an appropriate architecture for applying gate-stress to inject charges into the insulating layer, forming an electret. The generation of the electret is thermally accelerated and thus can be easily realized under moderate gate-stress at elevated temperature (e.g., 60 °C). After cooling, the electret layer serves as a floating-gate, which not only continuously tunes the threshold voltage and field-effect mobility, but also helps minimize the contact resistances and optimize the subthreshold swing. As an application of this method, a digital inverter is built and its performance is optimized via in situ tuning of its individual transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25, 6158–6183.

    Article  Google Scholar 

  2. Yu, K.; Park, B.; Kim, G.; Kim, C. H.; Park, S.; Kim, J.; Jung, S.; Jeong, S.; Kwon, S.; Kang, H. et al. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Proc. Natl. Acad. Sci. USA 2016, 113, 14261–14266.

    Article  Google Scholar 

  3. Fukuda, K.; Someya, T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 2017, 29, 1602736.

    Article  Google Scholar 

  4. Cui, N.; Ren, H.; Tang, Q. X.; Zhao, X. L.; Tong, Y. H.; Hu, W. P.; Liu, Y. C. Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale 2018, 10, 3613–3620.

    Article  Google Scholar 

  5. Tsao, H. N.; Müllen, K. Improving polymer transistor performance via morphology control. Chem. Soc. Rev. 2010, 39, 2372–2386.

    Article  Google Scholar 

  6. Wang, L.; Zhang, X. J.; Dai, G. L.; Deng, W.; Jie, J. S.; Zhang, X. H. High-mobility air-stable n-type field-effect transistors based on large-area solution-processed organic single-crystal arrays. Nano Res. 2018, 11, 882–891.

    Article  Google Scholar 

  7. Natali, D.; Caironi, M. Charge injection in solution-processed organic field-effect transistors: Physics, models and characterization methods. Adv. Mater. 2012, 24, 1357–1387.

    Article  Google Scholar 

  8. Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M. K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2017, 16, 356–362.

    Article  Google Scholar 

  9. Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.; Breiby, D. W.; Radano, C. P.; Andreasen, J. W.; Thompson, R.; Janssen, R. A. J.; Nielsen, M. M.; Smith, P. et al. Multicomponent semiconducting polymer systems with low crystallizationinduced percolation threshold. Nat. Mater. 2006, 5, 950–956.

    Article  Google Scholar 

  10. Yuan, Y. B.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J. H.; Nordlund, D.; Toney, M. F.; Huang, J. S.; Bao, Z. N. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spincoating method. Nat. Commun. 2014, 5, 3005.

    Article  Google Scholar 

  11. Hamilton, R.; Smith, J.; Ogier, S.; Heeney, M.; Anthony, J. E.; McCulloch, I.; Veres, J.; Bradley, D. D. C.; Anthopoulos, T. D. High-performance polymer-small molecule blend organic transistors. Adv. Mater. 2009, 21, 1166–1171.

    Article  Google Scholar 

  12. Niazi, M. R.; Li, R. P.; Li, E. Q.; Kirmani, A. R.; Abdelsamie, M.; Wang, Q. X.; Pan, W. Y.; Payne, M. M.; Anthony, J. E.; Smilgies, D. M. et al. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nat. Commun. 2015, 6, 8598.

    Article  Google Scholar 

  13. Kang, M. J.; Hwang, H.; Park, W. T.; Khim, D.; Yeo, J. S.; Kim, Y.; Kim, Y. J.; Noh, Y. Y.; Kim, D. Y. Ambipolar small-molecule: Polymer blend semiconductors for solutionprocessable organic field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 2686–2692.

    Article  Google Scholar 

  14. Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

    Article  Google Scholar 

  15. Kang, B.; Ge, F.; Qiu, L. Z.; Cho, K. Effective use of electrically insulating units in organic semiconductor thin films for high-performance organic transistors. Adv. Electron. Mater. 2017, 3, 1600240.

    Article  Google Scholar 

  16. Shiwaku, R.; Matsui, H.; Hayasaka, K.; Takeda, Y.; Fukuda, T.; Kumaki, D.; Tokito, S. Printed organic inverter circuits with ultralow operating voltages. Adv. Electron. Mater. 2017, 3, 1600557.

    Article  Google Scholar 

  17. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 2007, 129, 15732–15733.

    Article  Google Scholar 

  18. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ringdriven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

    Article  Google Scholar 

  19. Tsutsui, Y.; Schweicher, G.; Chattopadhyay, B.; Sakurai, T.; Arlin, J. B.; Ruzié, C.; Aliev, A.; Ciesielski, A.; Colella, S.; Kennedy, A. R. et al. Unraveling unprecedented charge carrier mobility through structure property relationship of four isomers of didodecyl[1]benzothieno[3,2-b][1]benzothiophene. Adv. Mater. 2016, 28, 7106–7114.

    Article  Google Scholar 

  20. Paterson, A. F.; Treat, N. D.; Zhang, W. M.; Fei, Z. P.; Wyatt-Moon, G.; Faber, H.; Vourlias, G.; Patsalas, P. A.; Solomeshch, O.; Tessler, N. et al. Small molecule/polymer blend organic transistors with hole mobility exceeding 13 cm2·V–1·s–1. Adv. Mater. 2016, 28, 7791–7798.

    Article  Google Scholar 

  21. Zhang, Y. H.; Luo, Z. Z.; Hu, F. R.; Nan, H. Y.; Wang, X. Y.; Ni, Z. H.; Xu, J. B.; Shi, Y.; Wang, X. R. Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336–1344.

    Article  Google Scholar 

  22. Liu, C.; Li, Y.; Minari, T.; Takimiya, K.; Tsukagoshi, K. Forming semiconductor/dielectric double layers by one-step spin-coating for enhancing the performance of organic field-effect transistors. Org. Electron. 2012, 13, 1146–1151.

    Article  Google Scholar 

  23. Soeda, J.; Hirose, Y.; Yamagishi, M.; Nakao, A.; Uemura, T.; Nakayama, K.; Uno, M.; Nakazawa, Y.; Takimiya, K.; Takeya, J. Solution-crystallized organic field-effect transistors with charge-acceptor layers: High-mobility and low-thresholdvoltage operation in air. Adv. Mater. 2011, 23, 3309–3314.

    Article  Google Scholar 

  24. Lüssem, B.; Tietze, M. L.; Kleemann, H.; Hoβbach, C.; Bartha, J. W.; Zakhidov, A.; Leo, K. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 2013, 4, 2775.

    Article  Google Scholar 

  25. Lüssem, B.; Keum, C. M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K. Doped organic transistors. Chem. Rev. 2016, 116, 13714–13751.

    Article  Google Scholar 

  26. Lee, B. H.; Bazan, G. C.; Heeger, A. J. Doping-induced carrier density modulation in polymer field-effect transistors. Adv. Mater. 2016, 28, 57–62.

    Article  Google Scholar 

  27. Zhang, F. J.; Dai, X. J.; Zhu, W. K.; Chung, H.; Diao, Y. Large modulation of charge carrier mobility in doped nanoporous organic transistors. Adv. Mater. 2017, 29, 1700411.

    Article  Google Scholar 

  28. Aghamohammadi, M.; Rödel, R.; Zschieschang, U.; Ocal, C.; Boschker, H.; Weitz, R. T.; Barrena, E.; Klauk, H. Thresholdvoltage shifts in organic transistors due to self-assembled monolayers at the dielectric: Evidence for electronic coupling and dipolar effects. ACS Appl. Mater. Interfaces 2015, 7, 22775–22785.

    Article  Google Scholar 

  29. Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 2004, 3, 317–322.

    Article  Google Scholar 

  30. Yokota, T.; Kajitani, T.; Shidachi, R.; Tokuhara, T.; Kaltenbrunner, M.; Shoji, Y.; Ishiwari, F.; Sekitani, T.; Fukushima, T.; Someya, T. A few-layer molecular film on polymer substrates to enhance the performance of organic devices. Nat. Nanotechnol. 2018, 13, 139–144.

    Article  Google Scholar 

  31. Possanner, S. K.; Zojer, K.; Pacher, P.; Zojer, E.; Schürrer, F. Threshold voltage shifts in organic thin-film transistors due to self-assembled monolayers at the dielectric surface. Adv. Funct. Mater. 2009, 19, 958–967.

    Article  Google Scholar 

  32. Choi, H. H.; Kang, M. S.; Kim, M.; Kim, H.; Cho, J. H.; Cho, K. Decoupling the bias-stress-induced charge trapping in semiconductors and gate-dielectrics of organic transistors using a double stretched-exponential formula. Adv. Funct. Mater. 2013, 23, 690–696.

    Article  Google Scholar 

  33. Salinas, M.; Jäger, C. M.; Amin, A. Y.; Dral, P. O.; Meyer-Friedrichsen, T.; Hirsch, A.; Clark, T.; Halik, M. The relationship between threshold voltage and dipolar character of self-assembled monolayers in organic thin-film transistors. J. Am. Chem. Soc. 2012, 134, 12648–12652.

    Article  Google Scholar 

  34. Roh, J.; Lee, T.; Kang, C. M.; Kwak, J.; Lang, P.; Horowitz, G.; Kim, H.; Lee, C. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors. Sci. Rep. 2017, 7, 46365.

    Article  Google Scholar 

  35. Katz, H. E.; Hong, X. M.; Dodabalapur, A.; Sarpeshkar, R. Organic field-effect transistors with polarizable gate insulators. J. Appl. Phys. 2002, 91, 1572–1576.

    Article  Google Scholar 

  36. Lu, G. H.; Koch, N.; Neher, D. In-situ tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret. Appl. Phys. Lett. 2015, 107, 063301.

    Article  Google Scholar 

  37. Bu, L. J.; Qiu, Y. M.; Wei, P.; Zhou, L.; Lu, W. L.; Li, S. T.; Lu, G. H. Manipulating transistor operation via nonuniformly distributed charges in a polymer insulating electret layer. Phys. Rev. Appl. 2016, 6, 054022.

    Article  Google Scholar 

  38. Choi, H. H.; Lee, W. H.; Cho, K. Bias-stress-induced charge trapping at polymer chain ends of polymer gate-dielectrics in organic transistors. Adv. Funct. Mater. 2012, 22, 4833–4839.

    Article  Google Scholar 

  39. She, X. J.; Liu, J.; Zhang, J. Y.; Gao, X.; Wang, S. D. Spatial profile of charge storage in organic field-effect transistor nonvolatile memory using polymer electret. Appl. Phys. Lett. 2013, 103, 143302.

    Article  Google Scholar 

  40. Martínez Hardigree, J. F.; Katz, H. E. Through thick and thin: Tuning the threshold voltage in organic field-effect transistors. Acc. Chem. Res. 2014, 47, 1369–1377.

    Article  Google Scholar 

  41. Wang, W.; Kim, K. L.; Cho, S. M.; Lee, J. H.; Park, C. Nonvolatile transistor memory with self-assembled semiconducting polymer nanodomain floating gates. ACS Appl. Mater. Interfaces 2016, 8, 33863–33873.

    Article  Google Scholar 

  42. Bu, L. J.; Hu, M. X.; Lu, W. L.; Wang, Z. Y.; Lu, G. H. Printing semiconductor-insulator polymer bilayers for highperformance coplanar field-effect transistors. Adv. Mater. 2018, 30, 1704695.

    Article  Google Scholar 

  43. Zhao, K.; Wodo, O.; Ren, D. D.; Khan, H. U.; Niazi, M. R.; Hu, H. L.; Abdelsamie, M.; Li, R. P.; Li, E. Q.; Yu, L. Y. et al. Vertical phase separation in small molecule: Polymer blend organic thin film transistors can be dynamically controlled. Adv. Funct. Mater. 2016, 26, 1737–1746.

    Article  Google Scholar 

  44. Bu, L. J.; Gao, S.; Wang, W. C.; Zhou, L.; Feng, S.; Chen, X.; Yu, D. M.; Li, S. T.; Lu, G. H. Film-depth-dependent light absorption and charge transport for polymer electronics: A case study on semiconductor/insulator blends by plasma etching. Adv. Electron. Mater. 2016, 2, 1600359.

    Article  Google Scholar 

  45. Makita, T.; Sasaki, M.; Annaka, T.; Sasaki, M.; Matsui, H.; Mitsui, C.; Kumagai, S.; Watanabe, S.; Hayakawa, T.; Okamoto, T. et al. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers. Appl. Phys. Lett. 2017, 110, 163302.

    Article  Google Scholar 

  46. Kwak, D.; Choi, H. H.; Kang, B.; Kim, D. H.; Lee, W. H.; Cho, K. Tailoring morphology and structure of inkjet-printed liquid-crystalline semiconductor/insulating polymer blends for high-stability organic transistors. Adv. Funct. Mater. 2016, 26, 3003–3011.

    Article  Google Scholar 

  47. Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.

    Article  Google Scholar 

  48. Uemura, T.; Rolin, C.; Ke, T. H.; Fesenko, P.; Genoe, J.; Heremans, P.; Takeya, J. On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 2016, 28, 151–155.

    Article  Google Scholar 

  49. Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

    Article  Google Scholar 

  50. Bobbert, P. A.; Sharma, A.; Mathijssen, S. G.; Kemerink, M.; de Leeuw, D. M. Operational stability of organic field-effect transistors. Adv. Mater. 2012, 24, 1146–1158.

    Article  Google Scholar 

  51. Phan, H.; Wang, M.; Bazan, G. C.; Nguyen, T. Q. Electrical instability induced by electron trapping in low-bandgap donor-acceptor polymer field-effect transistors. Adv. Mater. 2015, 27, 7004–7009.

    Article  Google Scholar 

  52. Richards, T.; Sirringhaus, H. Bias-stress induced contact and channel degradation in staggered and coplanar organic field-effect transistors. Appl. Phys. Lett. 2008, 92, 023512.

    Article  Google Scholar 

  53. Lee, W. H.; Choi, H. H.; Kim, D. H.; Cho, K. 25th anniversary article: Microstructure dependent bias stability of organic transistors. Adv. Mater. 2014, 26, 1660–80.

    Article  Google Scholar 

  54. Torricelli, F.; Colalongo, L.; Raiteri, D.; Kovács-Vajna, Z. M.; Cantatore, E. Ultra-high gain diffusion-driven organic transistor. Nat. Commun. 2016, 7, 10550.

    Article  Google Scholar 

  55. Uemura, T.; Matsumoto, T.; Miyake, K.; Uno, M.; Ohnishi, S.; Kato, T.; Katayama, M.; Shinamura, S.; Hamada, M.; Kang, M. J. et al. Split-gate organic field-effect transistors for highspeed operation. Adv. Mater. 2014, 26, 2983–2988.

    Article  Google Scholar 

  56. Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327.

    Article  Google Scholar 

  57. Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 2018, 17, 2–7.

    Article  Google Scholar 

  58. Kergoat, L.; Herlogsson, L.; Piro, B.; Pham, M. C.; Horowitz, G.; Crispin, X.; Berggren, M. Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proc. Natl. Acad. Sci. USA 2012, 109, 8394–8399.

    Article  Google Scholar 

  59. Minari, T.; Kano, M.; Miyadera, T.; Wang, S. D.; Aoyagi, Y.; Tsukagoshi, K. Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. Appl. Phys. Lett. 2009, 94, 093307.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51473132 and 21574103) and China Postdoctoral Science Foundation (Nos. 2015M580841 and 2016T90910). G. L. thanks Cyrus Tang Foundation and the Fundamental Research Funds for the Central Universities. The authors are grateful to Wanlong Lu, Yuming Qiu, Ziyu Wang, Yupeng Hu, and Xinyuan Dong for experimental assistance and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengtao Li, Laju Bu or Guanghao Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Li, S., Li, D. et al. Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Res. 11, 5835–5848 (2018). https://doi.org/10.1007/s12274-018-2088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2088-7

Keywords

Navigation