Skip to main content
Log in

Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cu(In, Ga)Se2 (CIGS)-based materials have gained remarkable attention for thin-film photovoltaic applications due to their high absorption coefficient, tunable bandgap, compositional tolerance, outstanding stabilities, and high efficiency. A small increase in the efficiency of CIGS solar cells has huge economic impact and practical importance. As such, we fabricated a flexible CIGS solar cell on amica substrate and demonstrated the enhanced device performance through the piezo- and pyro-phototronic effects based on a ZnO thin film. The device showed enhanced energy conversion efficiency from 13.48% to 14.23% by decreasing the temperature from 31 to 2 °C at a rate of ∼ 0.6 °C·s−1 via the pyro-phototronic effect, and further enhanced from 14.23% to 14.37% via the piezo-phototronic effect by further applying a static compressive strain. A pyro-electric nanogenerator effect was also found to promote the performance of the CIGS solar cell at the beginning of the cooling process. The manipulated energy band of the CIGS/CdS/ZnO heterojunction under the influence of the inner pyroelectric and piezoelectric potentials is believed to contribute to the sephenomena. Applying the piezo- and pyro-phototronic effects simultaneously offers a new opportunity for enhancing the output performance of commercialthin film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.

    Article  Google Scholar 

  2. Yu, Y. H.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q. L.; Kang, Z.; Yan, X. Q.; Zhang, Y.; Wang, X. D. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy 2017, 2, 17045.

    Article  Google Scholar 

  3. Tyagi, V. V.; Rahim, N. A. A.; Rahim, N. A.; Selvaraj, J. A. L. Progress in solar PV technology: Research and achievement. Renew. Sust. Energy Rev. 2013, 20, 443–461.

    Article  Google Scholar 

  4. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.

    Article  Google Scholar 

  5. Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. Highperformance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

    Article  Google Scholar 

  6. Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

    Article  Google Scholar 

  7. Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

    Article  Google Scholar 

  8. Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

    Article  Google Scholar 

  9. Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

    Article  Google Scholar 

  10. Wang, Z. L. Piezo-phototronic effect on solar cells. In Piezotronics andPiezo-Phototronics. Springer: Berlin, Heidelberg, 2012; pp 153–178.

    Chapter  Google Scholar 

  11. Hu, G. F.; Guo, W. X.; Yu, R. M.; Yang, X. N.; Zhou, R. R.; Pan, C. F.; Wang, Z. L. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy 2016, 23, 27–33.

    Article  Google Scholar 

  12. Pan, C. F.; Niu, S. M.; Ding, Y.; Dong, L.; Yu, R. M.; Liu, Y; Zhu, G; Wang, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 2012, 12, 3302–3307.

    Article  Google Scholar 

  13. Yang, Y.; Guo, W. X.; Zhang, Y; Ding, Y; Wang, X.; Wang, Z. L. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 2011, 11, 4812–4817.

    Article  Google Scholar 

  14. Zhu, L. P.; Wang, L. F.; Xue, F.; Chen, L. B.; Fu, J. Q.; Feng, X. L.; Li, T. F.; Wang, Z. L. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Adv. Sci. 2017, 4, 1600185.

    Article  Google Scholar 

  15. Zhang, Y.; Yang, Y.; Wang, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 2012, 5, 6850–6856.

    Article  Google Scholar 

  16. Zhu, L. P.; Wang, L. F.; Pan, C. F.; Chen, L. B.; Xue, F.; Chen, B. D.; Yang, L. J..; Su, L.; Wang, Z. L. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 2017, 11, 1894–1900.

    Article  Google Scholar 

  17. Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, X. M.; Zhang, Y One-dimensional ZnO nanostructure-based optoelectronics. Chin. Phys. B 2017, 26, 118102.

    Article  Google Scholar 

  18. Wang, Z. N.; Yu, R. M.; Pan, C. F.; Li, Z. L.; Yang, J.; Yi, F.; Wang, Z. L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401.

    Article  Google Scholar 

  19. Zhang, K. W.; Wang, Z. L.; Yang, Y Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano 2016, 10, 10331–10338.

    Article  Google Scholar 

  20. Peng, W. B.; Yu, R. M.; Wang, X. N.; Wang, Z. N.; Zou, H. Y; He, Y. N.; Wang, Z. L. Temperature dependence of pyrophototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695–3704.

    Article  Google Scholar 

  21. Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R. et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovoltaics: Res. Appl. 2003, 11, 225–230.

    Article  Google Scholar 

  22. Chirila, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A. R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 2011, 10, 857–861.

    Article  Google Scholar 

  23. Repins, I.; Contreras, M. A.; Egaas, B.; De Hart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovoltaics: Res. Appl. 2008, 16, 235–239.

    Article  Google Scholar 

  24. Ae, L.; Kieven, D.; Chen, J.; Klenk, R.; Rissom, T.; Tang, Y.; Lux-Steiner, M. C. ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells. Prog. Photovoltaics: Res. Appl. 2010, 18, 209–213.

    Article  Google Scholar 

  25. Duchatelet, A.; Letty, E.; Jaime-Ferrer, S.; Grand, P. P.; Mollica, F.; Naghavi, N. The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells. Sol. Energy Mater. Sol. C. 2017, 162, 114–119.

    Article  Google Scholar 

  26. Wen, X. N.; Wu, W. Z.; Wang, Z. L. Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy 2013, 2, 1093–1100.

    Article  Google Scholar 

  27. Wen, X. N.; Wu, W. Z.; Ding, Y.; Wang, Z. L. Piezotronic effect in flexible thin-film based devices. Adv. Mater. 2013, 25, 3371–3379.

    Article  Google Scholar 

  28. Li, C. P.; Yang, B. H. Local piezoelectricity and polarity distribution of preferred c-axis-oriented ZnO film investigated by piezoresponse force microscopy. J. Electron. Mater. 2011, 40, 253–258.

    Article  Google Scholar 

  29. Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229–9236.

    Article  Google Scholar 

  30. Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

    Article  Google Scholar 

  31. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  32. Lin, P.; Gu, Y. S.; Yan, X. Q.; Lu, S. N.; Zhang, Z.; Zhang, Y. Illumination-dependent free carrier screening effect on the performance evolution of ZnO piezotronic strain sensor. Nano Res. 2016, 9, 1091–1100.

    Article  Google Scholar 

  33. Yang, Y.; Wang, S. H.; Zhang, Y.; Wang, Z. L. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett. 2012, 12, 6408–6413.

    Article  Google Scholar 

  34. Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G; Zhou, Y. S.; Zhang, Y; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

    Article  Google Scholar 

  35. Ye, C. P.; Tamagawa, T.; Polla, D. L. Experimental studies on primary and secondary pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin films. J. Appl. Phys. 1991, 70, 5538–5543.

    Article  Google Scholar 

  36. Zook, J. D.; Liu, S. T. Pyroelectric effects in thin film. J. Appl. Phys. 1978, 49, 4604–4606.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the “thousands talents” program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 11704032, 51432005, 5151101243 and 51561145021), the National Key R&D Project from Ministery of Science and Technology (No. 2016YFA0202704), the National Program for Support of Top-notch Young Professionals, and the China Postdoctoral Science Foundation (No. 2016M600067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lin, P., Chen, B. et al. Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells. Nano Res. 11, 3877–3885 (2018). https://doi.org/10.1007/s12274-017-1962-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1962-z

Keywords

Navigation