Skip to main content
Log in

X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As dipyranylidenes are excellent hole carriers, applications in organic solar cells or organic light emitting diode are envisaged. In the present study, we investigate the morphology of 2,2′,6,6′-tetraphenyl-4,4′-dipyranylidene (DIPO-Ph4) deposited under vacuum on a silicon nitride (Si3N4) substrate, a paradigmatic system for the study of molecular crystal/inorganic substrate interfaces. Samples with various coating ratios and different thermal treatments were prepared. The films were characterized by atomic force microscopy and scanning transmission X-ray microscopy to gain insight into material growth. The results show a change in orientation at a molecular level depending upon the evaporation conditions. We are now able to tailor an organic layer with a specific molecular orientation and a specific electronic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S. S.; Ye, L.; Zhao, W. C.; Zhang, S. Q.; Mukherjee, S.; Ade, H.; Hou, J. H. Energy-level modulation of smallmolecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28: 9423–9429.

    Article  Google Scholar 

  2. Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1: 15027.

    Article  Google Scholar 

  3. Yan, Y.; Liu, X.; Wang, T. Conjugated-polymer blends for organic photovoltaics: Rational control of vertical stratification for high performance. Adv. Mater. 2017, 29: 1601674.

    Article  Google Scholar 

  4. Lin, Y. Z.; Chen, B.; Zhao, F. W.; Zheng, X. P.; Deng, Y. H.; Shao, Y. C.; Fang, Y. J.; Bai, Y.; Wang, C. R.; Huang, J. S. Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 2017, 29: 1700607.

    Article  Google Scholar 

  5. Yue, S. Z.; Lu, S. D.; Ren, K. K.; Liu, K.; Azam, M.; Cao, D. W.; Wang, Z. J.; Lei, Y.; Qu, S. C.; Wang, Z. G. Insights into the influence of work functions of cathodes on efficiencies of perovskite solar cells. Small 2017, 13: 1700007.

    Article  Google Scholar 

  6. Atxabal, A.; Braun, S.; Arnold, T.; Sun, X. N.; Parui, S.; Liu, X J..; Gozalvez, C.; Llopis, R.; Mateo-Alonso, A.; Casanova, F. et al. Energy level alignment at metal/solutionprocessed organic semiconductor interfaces. Adv. Mater. 2017, 29: 1606901.

    Article  Google Scholar 

  7. Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B. W.; Zhang, H.; Hou, J. H. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem., Int. Ed. 2017, 56: 3045–3049.

    Article  Google Scholar 

  8. Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.; Forrest, S. R. Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 2011, 83: 195326.

    Article  Google Scholar 

  9. Yeo, J. S.; Yun, J. M.; Kang, M. J.; Khim, D.; Lee, S. H.; Kim, S. S.; Na, S. I.; Kim, D. Y. An approach for an advanced anode interfacial layer with electron-blocking ability to achieve high-efficiency organic photovoltaics. ACS Appl. Mater. Interfaces 2014, 6: 19613–19620.

    Article  Google Scholar 

  10. Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA 2008, 105: 2783–2787.

    Article  Google Scholar 

  11. Zeng, H.; Zhu, X. C.; Liang, Y. Y.; Guo, X. G. Interfacial layer engineering for performance enhancement in polymer solar cells. Polymers 2015, 7: 333–372.

    Article  Google Scholar 

  12. Berny, S.; Tortech, L.; Véber, M.; Fichou, D. Dithiapyrannylidenes as efficient hole collection interfacial layers in organic solar cells. ACS Appl. Mater. Interfaces 2010, 2: 3059–3068.

    Article  Google Scholar 

  13. Watts, B.; Schuettfort, T.; McNeill, C. R. Mapping of domain orientation and molecular order in polycrystalline semiconducting polymer films with soft X-ray microscopy. Adv. Funct. Mater. 2011, 21: 1122–1131.

    Article  Google Scholar 

  14. Bartelt, J. A.; Beiley, Z. M.; Hoke, E. T.; Mateker, W. R.; Douglas, J. D.; Collins, B. A.; Tumbleston, J. R.; Graham, K. R.; Amassian, A.; Ade, H. et al. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 2013, 3: 364–374.

    Article  Google Scholar 

  15. Collins, B. A.; Li, Z.; Tumbleston, J. R.; Gann, E.; McNeill, C. R.; Ade, H. Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71 BM solar cells. Adv. Energy Mater. 2013, 3: 65–74.

    Article  Google Scholar 

  16. Stuart, A. C.; Tumbleston, J. R.; Zhou, H. X.; Li, W. T.; Liu, S. B.; Ade, H.; You, W. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 2013, 135: 1806–1815.

    Article  Google Scholar 

  17. Ye, L.; Zhang, S. Q.; Ma, W.; Fan, B. H.; Guo, X.; Huang, Y.; Ade, H.; Hou, J. H. From binary to ternary solvent: Morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. Adv. Mater. 2012, 24: 6335–6341.

    Article  Google Scholar 

  18. Swaraj, S.; Wang, C.; Yan, H. P.; Watts, B.; Lüning, J.; McNeill, C. R.; Ade, H. Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. Nano Lett. 2010, 10: 2863–2869.

    Article  Google Scholar 

  19. Collins, B. A.; Cochran, J. E.; Yan, H.; Gann, E.; Hub, C.; Fink, R.; Wang, C.; Schuettfort, T.; McNeill, C. R.; Chabinyc, M. L. et al. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 2012, 11: 536–543.

    Article  Google Scholar 

  20. Collins, B. A.; Gann, E.; Guignard, L.; He, X. X.; McNeill, C. R.; Ade, H. Molecular miscibility of polymer-fullerene blends. J. Phys. Chem. Lett. 2010, 1: 3160–3166.

    Article  Google Scholar 

  21. Chasseau, D.; Gaultier, J.; Hauw, C.; Fugnitto, R.; Gianis, V.; Strzelecka, H. Tétraphényldipyranylidène (Dip φ4). Acta Cryst. 1982, 38: 1629–1631.

    Article  Google Scholar 

  22. Fichou, D.; Tortech, L.; Alaaeddine, M. Novel method for manufacturing organic electronic devices. U.S. Patent 2015280125 (A1), October 1, 2015.

    Google Scholar 

  23. Pál, L.; Grüner, G.; Jánossy, A.; Sólyom, J. Organic Conductors and Semiconductors; Springer: Berlin, Heidelberg, 1977.

    Book  Google Scholar 

  24. D’Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 2005, 6: 11–20.

    Article  Google Scholar 

  25. Barth, V. Dipyrrométhènes métallés (Co, Ni, Cu) et dipyrannilidènes: De nouveaux materiaux organiques pour la conversion photovoltaïque de l’energie solaire. Ph.D. Dissertation, Université Pierre et Marie Curie, Paris, French, 2014.

    Google Scholar 

  26. Berny, S.; Tortech, L.; Fichou, D. Dérivés de type dipyrannylidene comme couche interfaciale anodique dans des dispositifs électroniques. WO/2011/045478, 2009.

    Google Scholar 

  27. aXis2000 sourceai][Online]. http://unicorn.mcmaster.ca/ aXis2000.html (accessed May 2, 2017).

  28. Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin Heidelberg, 1992.

    Book  Google Scholar 

  29. Liu, L. H.; Michalak, D. J.; Chopra, T. P.; Pujari, S. P.; Cabrera, W.; Dick, D.; Veyan, J. F.; Hourani, R.; Halls, M. D.; Zuilhof, H. et al. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide— selective functionalization of Si3N4 and SiO2. J. Phys. Condens. Matter 2016, 28: 094014.

    Article  Google Scholar 

  30. Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Nucleation and growth of thin films. Reports Prog. Phys. 1984, 47: 399–459.

    Article  Google Scholar 

  31. Kim, J. S.; Friend, R. H.; Cacialli, F. Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J. Appl. Phys. 1999, 86: 2774–2778.

    Article  Google Scholar 

  32. Arnoux, Q.; Boucly, A.; Barth, V.; Benbalagh, R.; Cossaro, A.; Floreano, L.; Silly, M.; Sirotti, F.; Derat, E.; Carniato, S. et al. Energy-level alignment of a hole-transport organic layer and ITO: Toward applications for organic electronic devices. ACS Appl. Mater. Interfaces 2017, 9: 30992–31004.

    Article  Google Scholar 

  33. Gupta, D.; Mukhopadhyay, S.; Narayan, K. S. Fill factor in organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94: 1309–1313.

    Article  Google Scholar 

Download references

Acknowledgements

Q. A. thanks the LABEX MiChem for funding his PhD grant. The authors express their thanks to PolLux beamline (PSI) for their technical support and to HERMES team (SOLEIL) for the great help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quentin Arnoux or Ludovic Tortech.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnoux, Q., Watts, B., Swaraj, S. et al. X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells. Nano Res. 11, 2771–2782 (2018). https://doi.org/10.1007/s12274-017-1907-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1907-6

Keywords

Navigation