Skip to main content
Log in

Size contrast of Pt nanoparticles formed on neighboring domains within suspended and supported graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The relatively small size of thin (one or few layers) graphene flakes makes it extremely difficult to study the behavior of suspended graphene by characterization techniques other than the electron microscopies. Herein, we exploited the capability of spatially resolved photoemission in combination with high resolution transmission electron microscopy to investigate the interaction of thermally evaporated Pt atoms on suspended and supported graphene. Spectroscopic and microscopic analyses reveal that the nucleation of nanometersized Pt particles in these two regions exhibit different trends. While only small nanometer-sized islands are present on the supported graphene, relatively larger clusters of islands were also found on the suspended flakes. The X-ray photoemission C 1s core levels acquired after the Pt deposition show an increase in the number of vacancies in the graphene sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

    Article  Google Scholar 

  2. He, Q. Y.; Sudibya, H. G.; Yin, Z. Y.; Wu, S. X.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano. 2010, 4, 3201–3208.

    Article  Google Scholar 

  3. Li, Y. X.; Wei, Z. D.; Zhao, Q. L.; Ding, W.; Zhang, Q.; Chen, S. G. Preparation of Pt/graphene catalyst and its catalytic performance for oxygen reduction. Acta Phys. Chim. Sin. 2011, 27, 858–862.

    Google Scholar 

  4. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  5. Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

    Article  Google Scholar 

  6. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  7. Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.

    Article  Google Scholar 

  8. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  Google Scholar 

  9. Guo, S. J.; Dong, S. J.; Wang, E. K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazoliumsalt-based ionic liquid as a linker. Adv. Mater. 2010, 22, 1269–1272.

    Article  Google Scholar 

  10. Kundu, P.; Nethravathi, C.; Deshpande, P. A.; Rajamathi, M.; Madras, G.; Ravishankar, N. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 2011, 23, 2772–2780.

    Article  Google Scholar 

  11. Shen, Y.; Xiao, K. J.; Xi, J. Y.; Qiu, X. P. Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 2015, 278, 235–244.

    Article  Google Scholar 

  12. Antony, R. P.; Preethi, L. K.; Gupta, B.; Mathews, T.; Dash, S.; Tyagi, A. K. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid. Mater. Res. Bull. 2015, 70, 60–67.

    Article  Google Scholar 

  13. Grayfer, E. D.; Kibis, L. S.; Stadnichenko, A. I.; Vilkov, O. Y.; Boronin, A. I.; Slavinskaya, E. M.; Stonkus, O. A.; Fedorov, V. E. Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon 2015, 89, 290–299.

    Article  Google Scholar 

  14. Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, C. S.; Bao Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Comm. 2014, 5, 4781.

    Article  Google Scholar 

  15. Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mahl, S. et al. 48-Channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68.

    Article  Google Scholar 

  16. Kolmakov, A.; Dikin, D. A.; Cote, L. J.; Huang, J. X.; Abyaneh, M. K.; Amati, M.; Gregoratti, L.; Günther, S.; Kiskinova, M. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol. 2011, 6, 651–657.

    Article  Google Scholar 

  17. Kraus, J.; Reichelt, R.; Günther, S.; Gregoratti, L.; Amati, M.; Kiskinova, M.; Yulaev, A.; Vlassiouk, I.; Kolmakov, A. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 2014, 6, 14394–14403.

    Article  Google Scholar 

  18. Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J. F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.

    Article  Google Scholar 

  19. Barinov, A.; Üstü nel, H.; Fabris, S.; Gregoratti, L.; Aballe, L.; Dudin, P.; Baroni, S.; Kiskinova, M. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys. Rev. Lett. 2007, 99, 046803.

    Article  Google Scholar 

  20. Barinov, A.; Malcioglu, O. B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.

    Article  Google Scholar 

  21. Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.

    Article  Google Scholar 

  22. Morrow, B. H.; Striolo, A. Platinum nanoparticles on carbonaceous materials: The effect of support geometry on nanoparticle mobility, morphology, and melting. Nanotechnology 2008, 19, 195711.

    Article  Google Scholar 

  23. Tang, Y. A.; Yang, Z. X.; Dai, X. Q. Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 2011, 135, 224704.

    Article  Google Scholar 

  24. Wang, H. T.; Feng, Q.; Cheng, Y. C.; Yao, Y. B.; Wang, Q. X.; Li, K.; Schwingenschlogl, U.; Zhang, X. X.; Yang, W. Atomic bonding between metal and graphene. J. Phys. Chem. C 2013, 117, 4632–4638.

    Article  Google Scholar 

  25. Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

    Article  Google Scholar 

  26. Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.

    Article  Google Scholar 

  27. Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.

    Article  Google Scholar 

  28. Okamoto, Y. Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 2006, 420, 382–386.

    Article  Google Scholar 

  29. Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykkö, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.

    Article  Google Scholar 

  30. Ramasse, Q. M.; Seabourne, C. R.; Kepaptsoglou, D. M.; Zan, R.; Bangert, U.; Scott, A. J. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 2013, 13, 4989–4995.

    Article  Google Scholar 

  31. Wang, Z. G.; Niu, X. Y.; Su, Q. L.; Deng, H. Q.; Li, Z. J.; Hu, W. Y.; Gao, F. Transition metal adsorption promotes patterning and doping of graphene by electron irradiation. J. Phys. Chem. C 2013, 117, 17644–17649.

    Article  Google Scholar 

  32. Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J. J.; Ghijsen, J.; Felicissimo, M. P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G. Platinum–carbon nanotube interaction. Chem. Phys. Lett. 2008, 462, 260–264.

    Article  Google Scholar 

  33. Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762.

    Article  Google Scholar 

  34. Chi, D. H.; Cuong, N. T.; Kim, N. A.; Tuan, N. A.; Kim, Y. T.; Bao, H. T.; Mitani, T.; Ozaki, T.; Nagao, H. Electronic structures of Pt clusters adsorbed on (5,5) single wall carbon nanotube. Chem. Phys. Lett. 2006, 432, 213–217.

    Article  Google Scholar 

  35. Shavorskiy, A.; Eralp, T.; Gladys, M. J.; Held, G. A stable pure hydroxyl layer on Pt{110}-(1 × 2). J. Phys. Chem. C 2009, 113, 21755–21764.

    Article  Google Scholar 

  36. Powell, C. J.; Jablonski, A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. Phys. Res. A 2009, 601, 54–65.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the technical staff of Elettra for the support in the sample and experiment preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Gregoratti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roccella, D., Amati, M., Sezen, H. et al. Size contrast of Pt nanoparticles formed on neighboring domains within suspended and supported graphene. Nano Res. 11, 1589–1598 (2018). https://doi.org/10.1007/s12274-017-1774-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1774-1

Keywords

Navigation