Skip to main content
Log in

Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We investigate in detail the self-assembled nucleation and growth of vertically oriented GaN nanowires by molecular beam epitaxy on crystalline TiN films. We demonstrate that this type of substrate allows for the growth of long and thin GaN nanowires that do not suffer from coalescence, a problem common to the growth on Si and other substrates. Only beyond a certain nanowire length that depends on the nanowire density and exceeds here 1.5 μm, coalescence takes place by bundling, i.e. the same process as on Si. By analyzing the nearest neighbor distance distribution, we identify the diffusion-induced repulsion of neighboring nanowires as the main mechanism limiting nanowire density during nucleation on TiN. Since on Si the final density is determined by shadowing of the impinging molecular beams by existing nanowires, it is the difference in adatom surface diffusion that enables the formation of nanowire ensembles with reduced density on TiN. These nanowire ensembles combine properties that make them a promising basis for the growth of core–shell heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. 1997, 36, L459–L462.

    Article  Google Scholar 

  2. Sanchez-Garcia, M.; Calleja, E.; Monroy, E.; Sánchez, F. J.; Calle, F.; Munõz, E.; Beresford, R. The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111). J. Cryst. Growth 1998, 183, 23–30.

    Article  Google Scholar 

  3. Cerutti, L.; Ristíc, J.; Fernández-Garrido, S.; Calleja, E.; Trampert, A.; Ploog, K. H.; Lazíc, S.; Calleja, J. M. Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy. Appl. Phys. Lett. 2006, 88, 213114.

    Article  Google Scholar 

  4. Bertness, K. A.; Roshko, A.; Mansfield, L. M.; Harvey, T. E.; Sanford, N. A. Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth 2008, 310, 3154–3158.

    Article  Google Scholar 

  5. Stoica, T.; Sutter, E.; Meijers, R. J.; Debnath, R. K.; Calarco, R.; Lüth, H.; Grützmacher, D. Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. Small 2008, 4, 751–754.

    Article  Google Scholar 

  6. Geelhaar, L.; Chèze, C.; Jenichen, B.; Brandt, O.; Pfüller, C.; Münch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T. et al. Properties of GaN nanowires grown by molecular beam epitaxy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 878–888.

    Article  Google Scholar 

  7. Schuster, F.; Furtmayr, F.; Zamani, R.; Magén, C.; Morante, J. R.; Arbiol, J.; Garrido, J. A.; Stutzmann, M. Self-assembled GaN nanowires on diamond. Nano Lett. 2012, 12, 2199–2204.

    Article  Google Scholar 

  8. Sobanska, M.; Klosek, K.; Borysiuk, J.; Kret, S.; Tchutchulasvili, G.; Gieraltowska, S.; Zytkiewicz, Z. R. Enhanced catalyst-free nucleation of GaN nanowires on amorphous Al2O3 by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2014, 115, 043517.

    Article  Google Scholar 

  9. Wölz, M.; Hauswald, C.; Flissikowski, T.; Gotschke, T.; Fernández-Garrido, S.; Brandt, O.; Grahn, H. T.; Geelhaar, L.; Riechert, H. Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film. Nano Lett. 2015, 15, 3743–3747.

    Article  Google Scholar 

  10. Calabrese, G.; Corfdir, P.; Gao, G. H.; Pfüller, C.; Trampert, A.; Brandt, O.; Geelhaar, L.; Fernández-Garrido, S. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil. Appl. Phys. Lett. 2016, 108, 202101.

    Article  Google Scholar 

  11. May, B. J.; Sarwar, A. T. M. G.; Myers, R. C. Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 2016, 108, 141103.

    Article  Google Scholar 

  12. Trampert, A.; Ristíc, J.; Jahn, U.; Calleja, E.; Ploog, K. TEM study of (Ga, Al)N nanocolumns and embedded GaN nanodiscs. In Microscopy of Semiconducting Materials (2003), Bristol, PA, USA, 2003, pp 167–170.

    Google Scholar 

  13. Calleja, E.; Ristíc, J.; Fernández-Garrido, S.; Cerutti, L.; Sánchez-García, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sánchez, G.; Griol, A. et al. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys. Status Solidi (B) 2007, 244, 2816–2837.

    Article  Google Scholar 

  14. Bertness, K. A.; Sanford, N. A.; Davydov, A. V. GaN nanowires grown by molecular beam epitaxy. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 847–858.

    Article  Google Scholar 

  15. Hersee, S. D.; Rishinaramangalam, A. K.; Fairchild, M. N.; Zhang, L.; Varangis, P. Threading defect elimination in GaN nanowires. J. Mater. Res. 2011, 26, 2293–2298.

    Article  Google Scholar 

  16. Zhang, X.; Dubrovskii, V. G.; Sibirev, N. V.; Ren, X. M. Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 2011, 11, 5441–5448.

    Article  Google Scholar 

  17. Kikuchi, A.; Kawai, M.; Tada, M.; Kishino, K. InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 2004, 43, L1524–L1526.

    Article  Google Scholar 

  18. Wang, D. F.; Pierre, A.; Kibria, M. G.; Cui, K.; Han, X. G.; Bevan, K. H.; Guo, H.; Paradis, S.; Hakima, A.-R.; Mi, Z. T. Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 2011, 11, 2353–2357.

    Article  Google Scholar 

  19. Waag, A.; Wang, X.; Fündling, S.; Ledig, J.; Erenburg, M.; Neumann, R.; Al Suleiman, M.; Merzsch, S.; Wei, J. D.; Li, S. F. et al. The nanorod approach: GaN nanoLEDs for solid state lighting. Phys. Status Solidi (C) 2011, 8, 2296–2301.

    Article  Google Scholar 

  20. Kamimura, J.; Bogdanoff, P.; Lähnemann, J.; Hauswald, C.; Geelhaar, L.; Fiechter, S.; Riechert, H. Photoelectrochemical properties of (In, Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy. J. Am. Chem. Soc. 2013, 135, 10242–10245.

    Article  Google Scholar 

  21. Gogneau, N.; Chrétien, P.; Galopin, E.; Guilet, S.; Travers, L.; Harmand, J. C.; Houzé, F. GaN nanowires for piezoelectric generators. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 414–419.

    Article  Google Scholar 

  22. Schuster, F.; Hetzl, M.; Weiszer, S.; Wolfer, M.; Kato, H.; Nebel, C. E.; Garrido, J. A.; Stutzmann, M. Optoelectronic properties of p-diamond/n-GaN nanowire heterojunctions. J. Appl. Phys. 2015, 118, 154303.

    Article  Google Scholar 

  23. Zhao, S. R.; Nguyen, H. P. T.; Kibria, M. G.; Mi, Z. T. III-Nitride nanowire optoelectronics. Prog. Quantum Electron. 2015, 44, 14–68.

    Article  Google Scholar 

  24. Aharonovich, I.; Englund, D.; Toth, M. Solid-state singlephoton emitters. Nat. Photonics 2016, 10, 631–641.

    Article  Google Scholar 

  25. Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248–2251.

    Article  Google Scholar 

  26. Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Arbiol, J.; Estradé, S.; Peirò, F.; Morante, J. R.; Eickhoff, M. Nucleation and growth of GaN nanorods on Si (111) surfaces by plasmaassisted molecular beam epitaxy—The influence of Si- and Mg-doping. J. Appl. Phys. 2008, 104, 034309.

    Article  Google Scholar 

  27. Consonni, V.; Knelangen, M.; Trampert, A.; Geelhaar, L.; Riechert, H. Nucleation and coalescence effects on the density of self-induced GaN nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 071913.

    Article  Google Scholar 

  28. Brandt, O.; Fernández-Garrido, S.; Zettler, J. K.; Luna, E.; Jahn, U.; Chèze, C.; Kaganer, V. M. Statistical analysis of the shape of one-dimensional nanostructures: Determining the coalescence degree of spontaneously formed GaN nanowires. Cryst. Growth Des. 2014, 14, 2246–2253.

    Article  Google Scholar 

  29. Fernández-Garrido, S.; Kaganer, V. M.; Hauswald, C.; Jenichen, B.; Ramsteiner, M.; Consonni, V.; Geelhaar, L.; Brandt, O. Correlation between the structural and optical properties of spontaneously formed GaN nanowires: A quantitative evaluation of the impact of nanowire coalescence. Nanotechnology 2014, 25, 455702.

    Article  Google Scholar 

  30. Kaganer, V. M.; Fernández-Garrido, S.; Dogan, P.; Sabelfeld, K. K.; Brandt, O. Nucleation, growth, and bundling of GaN nanowires in molecular beam epitaxy: Disentangling the origin of nanowire coalescence. Nano Lett. 2016, 16, 3717–3725.

    Article  Google Scholar 

  31. Consonni, V.; Knelangen, M.; Jahn, U.; Trampert, A.; Geelhaar, L.; Riechert, H. Effects of nanowire coalescence on their structural and optical properties on a local scale. Appl. Phys. Lett. 2009, 95, 241910.

    Article  Google Scholar 

  32. Jenichen, B.; Brandt, O.; Pfüller, C.; Dogan, P.; Knelangen, M.; Trampert, A. Macro- and micro-strain in GaN nanowires on Si(111). Nanotechnology 2011, 22, 295714.

    Article  Google Scholar 

  33. Grossklaus, K. A.; Banerjee, A.; Jahangir, S.; Bhattacharya, P.; Millunchick, J. M. Misorientation defects in coalesced self-catalyzed GaN nanowires. J. Cryst. Growth 2013, 371, 142–147.

    Article  Google Scholar 

  34. Fan, S. Z.; Zhao, S. R.; Liu, X. D.; Mi, Z. T. Study on the coalescence of dislocation-free GaN nanowires on Si and SiOx. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2014, 32, 02C114.

    Google Scholar 

  35. Kaganer, V. M.; Jenichen, B.; Brandt, O. Elastic versus plastic strain relaxation in coalesced GaN nanowires: An X-ray diffraction study. Phys. Rev. Appl. 2016, 6, 064023.

    Article  Google Scholar 

  36. Hetzl, M.; Schuster, F.; Winnerl, A.; Weiszer, S.; Stutzmann, M. GaN nanowires on diamond. Mater. Sci. Semicond. Process. 2016, 48, 65–78.

    Article  Google Scholar 

  37. Carnevale, S. D.; Yang, J.; Phillips, P. J.; Mills, M. J.; Myers, R. C. Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes. Nano Lett. 2011, 11, 866–871.

    Article  Google Scholar 

  38. Zettler, J. K.; Corfdir, P.; Geelhaar, L.; Riechert, H.; Brandt, O.; Fernández-Garrido, S. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process. Nanotechnology 2015, 26, 445604.

    Article  Google Scholar 

  39. Kong, X.; Ristíc, J.; Sanchez-Garcia, M. A.; Calleja, E.; Trampert, A. Polarity determination by electron energyloss spectroscopy: Application to ultra-small III-nitride semiconductor nanocolumns. Nanotechnology 2011, 22, 415701.

    Article  Google Scholar 

  40. Largeau, L.; Galopin, E.; Gogneau, N.; Travers, L.; Glas, F.; Harmand, J.-C. N-polar GaN nanowires seeded by Al droplets on Si (111). Cryst. Growth Des. 2012, 12, 2724–2729.

    Article  Google Scholar 

  41. Auzelle, T.; Haas, B.; Minj, A.; Bougerol, C.; Rouvière, J.-L.; Cros, A.; Colchero, J.; Daudin, B. The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 2015, 117, 245303.

    Article  Google Scholar 

  42. Brubaker, M. D.; Levin, I.; Davydov, A. V.; Rourke, D. M.; Sanford, N. A.; Bright, V. M.; Bertness, K. A. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy. J. Appl. Phys. 2011, 110, 053506.

    Article  Google Scholar 

  43. Bertness, K. A.; Roshko, A.; Mansfield, L. M.; Harvey, T. E.; Sanford, N. A. Nucleation conditions for catalyst-free GaN nanowires. J. Cryst. Growth 2007, 300, 94–99.

    Article  Google Scholar 

  44. Luther, B. P.; Mohney, S. E.; Jackson, T. N. Titanium and titanium nitride contacts to n-type gallium nitride. Semicond. Sci. Technol. 1998, 13, 1322–1327.

    Article  Google Scholar 

  45. Gautier, S.; Komninou, P.; Patsalas, P.; Kehagias, T.; Logothetidis, S.; Dimitriadis, C. A.; Nouet, G. Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semicond. Sci. Technol. 2003, 18, 594–601.

    Article  Google Scholar 

  46. Maus, C.; Stauden, T.; Ecke, G.; Tonisch, K.; Pezoldt, J. Smooth ceramic titanium nitride contacts on AlGaN/GaNheterostructures. Semicond. Sci. Technol. 2012, 27, 115007.

    Article  Google Scholar 

  47. Heying, B.; Averbeck, R.; Chen, L. F.; Haus, E.; Riechert, H.; Speck, J. S. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2000, 88, 1855–1860.

    Article  Google Scholar 

  48. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

    Article  Google Scholar 

  49. Fernández-Garrido, S.; Kaganer, V. M.; Sabelfeld, K. K.; Gotschke, T.; Grandal, J.; Calleja, E.; Geelhaar, L.; Brandt, O. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy. Nano Lett. 2013, 13, 3274–3280.

    Article  Google Scholar 

  50. Pfüller, C.; Ramsteiner, M.; Brandt, O.; Grosse, F.; Rathsfeld, A.; Schmidt, G.; Geelhaar, L.; Riechert, H. Raman spectroscopy as a probe for the coupling of light into ensembles of sub-wavelength-sized nanowires. Appl. Phys. Lett. 2012, 101, 083104.

    Article  Google Scholar 

  51. Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399–459.

    Article  Google Scholar 

  52. Thompson, C. V. On the grain size and coalescence stress resulting from nucleation and growth processes during formation of polycrystalline thin films. J. Mater. Res. 1999, 14, 3164–3168.

    Article  Google Scholar 

  53. Consonni, V.; Trampert, A.; Geelhaar, L.; Riechert, H. Physical origin of the incubation time of self-induced GaN nanowires. Appl. Phys. Lett. 2011, 99, 033102.

    Article  Google Scholar 

  54. Kishino, K.; Sekiguchi, H.; Kikuchi, A. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth 2009, 311, 2063–2068.

    Article  Google Scholar 

  55. Moison, J. M.; Houzay, F.; Barthe, F.; Leprince, L.; André, E.; Vatel, O. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 1994, 64, 196–198.

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to C. Stemmler, H.-P. Schönherr, and C. Herrmann for the maintenance of the MBE system, and A.-K. Bluhm for the SE micrographs. Furthermore, we are thankful to T. Auzelle for a critical reading of the manuscript. Financial support of this work by the Leibniz-Gemeinschaft (No. SAW-2013-PDI-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David van Treeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Treeck, D., Calabrese, G., Goertz, J.J.W. et al. Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films. Nano Res. 11, 565–576 (2018). https://doi.org/10.1007/s12274-017-1717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1717-x

Keywords

Navigation