Skip to main content
Log in

Highly-anisotropic optical and electrical properties in layered SnSe

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Anisotropic materials are of considerable interest because of their unique combination of polarization- or direction-dependent electrical, optical, and thermoelectric properties. Low-symmetry two-dimensional (2D) materials formed by van der Waals stacking of covalently bonded atomic layers are inherently anisotropic. Layered SnSe exhibits a low degree of lattice symmetry, with a distorted NaCl structure and an in-plane anisotropy. Here we report a systematic study of the in-plane anisotropic properties in layered SnSe, using angle-resolved Raman scattering, optical absorption, and electrical transport studies. The optical and electrical characterization was direction-dependent, and successfully identified the crystalline orientation in the layered SnSe. Furthermore, the dependence of Raman-intensity anisotropy on the SnSe flake thickness and the excitation wavelength were investigated by both experiments and theoretical calculations. Finally, the electrical transport studies demonstrated that few-layer SnSe field-effect transistors (FETs) have a large anisotropic ratio of carrier mobility (∼5.8) between the armchair and zigzag directions, which is a record high value reported for 2D anisotropic materials. The highly-anisotropic properties of layered SnSe indicate considerable promise for anisotropic optics, electronics, and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2014, 6, 6991.

    Article  Google Scholar 

  2. Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332.

    Article  Google Scholar 

  3. Tao, J.; Shen, W. F.; Wu, S.; Liu, L.; Feng, Z. H.; Wang, C.; Hu, C. G.; Yao, P.; Zhang, H.; Pang, W. et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362–11370.

    Article  Google Scholar 

  4. Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

    Article  Google Scholar 

  5. Hart, L.; Dale, S.; Hoye, S.; Webb, J. L.; Wolverson, D. Rhenium dichalcogenides: Layered semiconductors with two vertical orientations. Nano Lett. 2016, 16, 1381–1386.

    Article  Google Scholar 

  6. Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

    Article  Google Scholar 

  7. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

    Article  Google Scholar 

  8. Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205–208.

    Google Scholar 

  9. Wang, C.; Yang, S. X.; Xiong, W. Q.; Xia, C. X.; Cai, H.; Chen, B.; Wang, X. T.; Zhang, X. Z.; Wei, Z. M.; Tongay, S. et al. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p–n heterojunctions. Phys. Chem. Chem. Phys. 2016, 18, 27750–27753.

    Article  Google Scholar 

  10. Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Neto, A. H. C. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.

    Article  Google Scholar 

  11. Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

    Article  Google Scholar 

  12. Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of singlecrystalline SnTe nanowire. Nano Lett. 2013, 13, 5344–5349.

    Article  Google Scholar 

  13. Huang, S. X.; Tatsumi, Y.; Ling, X.; Guo, H. H.; Wang, Z. Q.; Watson, G.; Puretzky, A. A.; Geohegan, D. B.; Kong, J.; Li, J. et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano 2016, 10, 8964–8972.

    Article  Google Scholar 

  14. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.

    Article  Google Scholar 

  15. Wang, C.; Yang, S. X.; Cai, H.; Ataca, C.; Chen, H.; Zhang, X. Z.; Xu, J. J.; Chen, B.; Wu, K. D.; Zhang, H. R. et al. Enhancing light emission efficiency without color change in post-transition metal chalcogenides. Nanoscale 2016, 8, 5820–5825.

    Article  Google Scholar 

  16. Yang, S. X.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J. C.; Jiang, C. B.; Liu, Q. et al. Selfdriven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p−n vdW heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539.

    Article  Google Scholar 

  17. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron–photon and electron–phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    Article  Google Scholar 

  18. Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

    Article  Google Scholar 

  19. Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

    Article  Google Scholar 

  20. Ge, S. F.; Li, C. K.; Zhang, Z. M.; Zhang, C. L.; Zhang, Y. D.; Qiu, J.; Wang, Q. S.; Liu, J. K.; Jia, S.; Feng, J. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett. 2015, 15, 4650–4656.

    Article  Google Scholar 

  21. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  22. Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H.L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

    Article  Google Scholar 

  23. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    Article  Google Scholar 

  24. Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399–2411.

    Article  Google Scholar 

  25. Vaughn II, D. D.; In, S. I.; Schaak, R. E. A precursorlimited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS Nano 2011, 5, 8852–8860.

    Article  Google Scholar 

  26. Pejova, B.; Tanuševsk, A. A Study of photophysics, photoelectrical properties, and photoconductivity relaxation dynamics in the case of nanocrystalline Tin(II) selenide thin films. J. Phys. Chem. C 2008, 112, 3525–3537.

    Article  Google Scholar 

  27. Agarwal, A.; Vashi, M. N.; Lakshminarayana, D.; Batra, N. M. Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci. Mater. Electron. 2000, 11, 67–71.

    Article  Google Scholar 

  28. Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931.

    Article  Google Scholar 

  29. Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.

    Article  Google Scholar 

  30. Carrete, J.; Mingo, N.; Curtarolo, S. Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett. 2014, 105, 101907.

    Article  Google Scholar 

  31. Zhang, J.; Zhu, H. Y.; Wu, X. X.; Cui, H.; Li, D. M.; Jiang, J. R.; Gao, C. X.; Wang, Q. S.; Cui, Q. L. Plasma-assisted synthesis and pressure-induced structural transition of singlecrystalline SnSe nanosheets. Nanoscale 2015, 7, 10807–10816.

    Article  Google Scholar 

  32. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

  33. Wu, J. B.; Zhao, H.; Li, Y. R.; Ohlberg, D.; Shi, W.; Wu, W.; Wang, H.; Tan, P. H. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756–762.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support from National Science Foundation through the grant DMR1508144. S. X. Y. is supported by the National Natural Science Foundation of China (No. 51602014) and Fundamental Research Funds for the Central Universities (No. YWF-17-BJ-Y-112). C. B. J. is supported by the National Natural Science Foundations of China (No. 51331001). S. H. W. is supported by the National Natural Science Foundations of China (No. 51672023). We thank Prof. Dehui Li for discussing the experiments and related data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengxue Yang or Xiangfeng Duan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liu, Y., Wu, M. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11, 554–564 (2018). https://doi.org/10.1007/s12274-017-1712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1712-2

Keywords

Navigation