Skip to main content
Log in

In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Comprehensive understanding of the structural/morphology stability of ultrathin (diameter < 10 nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable implementation of these emerging building blocks into functional nanoelectronics and mechatronics systems. Here, by using the in situ transmission electron microscopy (TEM) technique, we discovered that the Rayleigh instability phenomenon exists in ultrathin gold nanowires upon moderate heating. Through the controlled electron beam irradiation-induced heating mechanism (with < 100 °C temperature rise), we further quantified the effect of electron beam intensity and its dependence on Rayleigh instability in altering the geometry and morphology of the ultrathin gold nanowires. Moreover, in situ high-resolution TEM (HRTEM) observations revealed surface atomic diffusion process to be the dominating mechanism for the morphology evolution processes. Our results, with unprecedented details on the atomic-scale picture of Rayleigh instability and its underlying physics, provide critical insights on the thermal/structural stability of gold nanostructures down to a sub-10 nm level, which may pave the way for their interconnect applications in future ultralarge- scale integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.

    Article  Google Scholar 

  2. Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900–8901.

    Article  Google Scholar 

  3. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  Google Scholar 

  4. Pud, S.; Kisner, A.; Heggen, M.; Belaineh, D.; Temirov, R.; Simon, U.; Offenhäusser, A.; Mourzina, Y.; Vitusevich, S. Ultrathin nanowires: Features of transport in ultrathin gold nanowire structures. Small 2013, 9, 846–852.

    Article  Google Scholar 

  5. Rodrigues, V.; Fuhrer, T.; Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 2000, 85, 4124–4127.

    Article  Google Scholar 

  6. Pascual, J. I.; Méndez, J.; Gómez-Herrero, J.; Baró, A. M.; Garcia, N.; Landman, U.; Luedtke, W. D.; Bogachek, E. N.; Cheng, H. P. Properties of metallic nanowires: From conductance quantization to localization. Science 1995, 267, 1793–1795.

    Article  Google Scholar 

  7. Roy, A.; Pandey, T.; Ravishankar, N.; Singh, A. K. Single crystalline ultrathin gold nanowires: Promising nanoscale interconnects. AIP Adv. 2013, 3, 032131.

    Article  Google Scholar 

  8. Chen, Y.; Ouyang, Z.; Gu, M.; Cheng, W. L. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 2013, 25, 80–85.

    Article  Google Scholar 

  9. Sánchez-Iglesias, A.; Rivas-Murias, B.; Grzelczak, M.; Pérez-Juste, J.; Liz-Marzán, L. M.; Rivadulla, F.; Correa-Duarte, M. A. Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers. Nano Lett. 2012, 12, 6066–6070.

    Article  Google Scholar 

  10. Maurer, J. H. M.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Sintering of ultrathin gold nanowires for transparent electronics. ACS Appl. Mater. Interfaces 2015, 7, 7838–7842.

    Article  Google Scholar 

  11. Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D. Metallic nanowire networks: Effects of thermal annealing on electrical resistance. Nanoscale 2014, 6, 13535–13543.

    Article  Google Scholar 

  12. Rauber, M.; Muench, F.; Toimil-Molares, M. E.; Ensinger, W. Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures. Nanotechnology 2012, 23, 475710.

    Article  Google Scholar 

  13. Rayleigh, J. W. S. L. On the instability of jets. Proc. London Math. Soc. 1878, s1–10, 4–13.

    Article  Google Scholar 

  14. Nichols, F. A.; Mullins, W. W. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J. Appl. Phys. 1965, 36, 1826–1835.

    Article  Google Scholar 

  15. Mullins, W. W. Capillarity-induced surface morphologies. Interface Sci. 2001, 9, 9–20.

    Article  Google Scholar 

  16. Molares, M. E. T.; Balogh, A. G.; Cornelius, T. W.; Neumann, R.; Trautmann, C. Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys.Lett. 2004, 85, 5337–5339.

    Article  Google Scholar 

  17. Karim, S.; Toimil-Molares, M. E.; Balogh, A. G.; Ensinger, W.; Cornelius, T. W.; Khan, E. U.; Neumann, R. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 2006, 17, 5954–5959.

    Article  Google Scholar 

  18. Novo, C.; Mulvaney, P. Charge-induced Rayleigh instabilities in small gold rods. Nano Lett. 2007, 7, 520–524.

    Article  Google Scholar 

  19. Shin, H. S.; Yu, J.; Song, J. Y. Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 2007, 91, 173106.

    Article  Google Scholar 

  20. Li, H. W.; Biser, J. M.; Perkins, J. T.; Dutta, S.; Vinci, R. P.; Chan, H. M. Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 2008, 103, 024315.

    Article  Google Scholar 

  21. Qin, Y.; Lee, S. M.; Pan, A. L.; Gösele, U.; Knez, M. Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. Nano Lett. 2008, 8, 114–118.

    Article  Google Scholar 

  22. Volk, A.; Knez, D.; Thaler, P.; Hauser, A. W.; Grogger, W.; Hofer, F.; Ernst, W. E. Thermal instabilities and Rayleigh breakup of ultrathin silver nanowires grown in helium nanodroplets. Phys. Chem. Chem. Phys. 2015, 17, 24570–24575.

    Article  Google Scholar 

  23. Naik, J. P.; Prewett, P. D.; Das, K.; Raychaudhuri, A. K. Instabilities in focused ion beam-patterned Au nanowires. Microelectron. Eng. 2011, 88, 2840–2843.

    Article  Google Scholar 

  24. Day, R. W.; Mankin, M. N.; Gao, R. X.; No, Y. S.; Kim, S. K.; Bell, D. C.; Park, H. G.; Lieber, C. M. Plateau–Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nano 2015, 10, 345–352.

    Article  Google Scholar 

  25. Roy, A.; Kundu, S.; Müller, K.; Rosenauer, A.; Singh, S.; Pant, P.; Gururajan, M. P.; Kumar, P.; Weissmüller, J.; Singh, A. K. et al. Wrinkling of atomic planes in ultrathin Au nanowires. Nano Lett. 2014, 14, 4859–4866.

    Article  Google Scholar 

  26. Rabaey, J. M.; Chandrakasan, A. P.; Nikolic, B. Digital Integrated Circuits; 2nd ed. Prentice Hall: Englewood Cliffs, 2002.

    Google Scholar 

  27. Yu, Y.; Cui, F.; Sun, J. W.; Yang, P. D. Atomic structure of ultrathin gold nanowires. Nano Lett. 2016, 16, 3078–3084.

    Article  Google Scholar 

  28. Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y. Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 144.

    Article  Google Scholar 

  29. Wang, L. H.; Teng, J.; Liu, P.; Hirata, A.; Ma, E.; Zhang, Z.; Chen, M. W.; Han, X. D. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 2014, 5, 4402.

    Google Scholar 

  30. Wang, L. H.; Han, X. D.; Liu, P.; Yue, Y. H.; Zhang, Z.; Ma, E. In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 2010, 105, 135501.

    Article  Google Scholar 

  31. Zheng, H.; Wang, J. B.; Huang, J. Y.; Cao, A. J.; Mao, S. X. In situ visualization of birth and annihilation of grain boundaries in an Au nanocrystal. Phys. Rev. Lett. 2012, 109, 225501.

    Article  Google Scholar 

  32. Han, X. D.; Zhang, Y. F.; Zheng, K.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.

    Article  Google Scholar 

  33. Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in??situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112–2118.

    Article  Google Scholar 

  34. Wang, L. H.; Zheng, K.; Zhang, Z.; Han, X. D. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011, 11, 2382–2385.

    Article  Google Scholar 

  35. Yue, Y. H.; Liu, P.; Zhang, Z.; Han, X. D.; Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011, 11, 3151–3155.

    Article  Google Scholar 

  36. Qin, S. Y.; Kim, T. H.; Zhang, Y. N.; Ouyang, W. J.; Weitering, H. H.; Shih, C. K.; Baddorf, A. P.; Wu, R. Q.; Li, A. P. Correlating electronic transport to atomic structures in self-assembled quantum wires. Nano Lett. 2012, 12, 938–942.

    Article  Google Scholar 

  37. Egerton, R. F. Choice of operating voltage for a transmission electron microscope. Ultramicroscopy 2014, 145, 85–93.

    Article  Google Scholar 

  38. Zheng, K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 24.

    Google Scholar 

  39. Dai, G. L.; Wang, B. J.; Xu, S.; Lu, Y.; Shen, Y. J. Sideto- side cold welding for controllable nanogap formation from “Dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 2016, 8, 13506–13511.

    Article  Google Scholar 

  40. José-Yacamán, M.; Gutierrez-Wing, C.; Miki, M.; Yang, D. Q.; Piyakis, K. N.; Sacher, E. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 2005, 109, 9703–9711.

    Article  Google Scholar 

  41. Lee, S. B.; Park, J.; van Aken, P. A. Formation of Pt–Zn alloy nanoparticles by electron-beam irradiation of wurtzite ZnO in the TEM. Nanoscale Res. Lett. 2016, 11, 339.

    Article  Google Scholar 

  42. Rez, P.; Glaisher, R. W. Measurement of energy deposition in transmission electron microscopy. Ultramicroscopy 1991, 35, 65–69.

    Article  Google Scholar 

  43. Sun, J.; He, L. B.; Lo, Y. C.; Xu, T.; Bi, H. C.; Sun, L. T.; Zhang, Z.; Mao, S. X.; Li, J. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 2014, 13, 1007–1012.

    Article  Google Scholar 

  44. Nichols, F. A.; Mullins, W. W. Surface (interface) and volume diffusion contributions to morphological changes driven by capillarity. Trans. Metall. Soc. AIME 1965, 233, 1840.

    Google Scholar 

  45. McCallum, M. S.; Voorhees, P. W.; Miksis, M. J.; Davis, S. H.; Wong, H. Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 1996, 79, 7604–7611.

    Article  Google Scholar 

  46. Critchley, K.; Khanal, B. P.; Górzny, M. L.; Vigderman, L.; Evans, S. D.; Zubarev, E. R.; Kotov, N. A. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv. Mater. 2010, 22, 2338–2342.

    Article  Google Scholar 

  47. Kundu, P.; Turner, S.; van Aert, S.; Ravishankar, N.; van Tendeloo, G. Atomic structure of quantum gold nanowires: Quantification of the lattice strain. ACS Nano 2014, 8, 599–606.

    Article  Google Scholar 

  48. Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart and Winston: New York, 1976.

    Google Scholar 

  49. Chandni, U.; Kundu, P.; Singh, A. K.; Ravishankar, N.; Ghosh, A. Insulating state and breakdown of fermi liquid description in molecular-scale single-crystalline wires of gold. ACS Nano 2011, 5, 8398–8403.

    Article  Google Scholar 

  50. Chandni, U.; Kundu, P.; Kundu, S.; Ravishankar, N.; Ghosh, A. Tunability of electronic states in ultrathin gold nanowires. Adv. Mater. 2013, 25, 2486–2491.

    Article  Google Scholar 

  51. Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nano 2010, 5, 218–224.

    Article  Google Scholar 

  52. Xu, S.; Joseph, S.; Zhang, H. T.; Lou, J.; Lu, Y. Controllable high-throughput fabrication of porous gold nanorods driven by Rayleigh instability. RSC Adv. 2016, 6, 66484–66489.

    Article  Google Scholar 

  53. Joshi, C.; Abinandanan, T. A.; Choudhury, A. Phase field modelling of rayleigh instabilities in the solid-state. Acta Mater. 2016, 109, 286–291.

    Article  Google Scholar 

  54. Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CityU 11209914) and the National Natural Science Foundation of China (No. 51301147). The work was also supported by the Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Li, P. & Lu, Y. In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 11, 625–632 (2018). https://doi.org/10.1007/s12274-017-1667-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1667-3

Keywords

Navigation