Skip to main content
Log in

Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have fabricated top-gated ambipolar field-effect transistors (FETs) based on solution-derived carbon nanotube (CNT) network films, and then constructed inverters and ring oscillators (ROs) that can work under supply voltages as low as 0.2 V owing to the high uniformity of the devices. Significant improvements were achieved in the performance of these CNT-based ambipolar FETs and CMOS-like circuits by scaling down the gate length of the CNT FETs and optimizing the device structure and RO layout. In particular, the optimized five-stage RO is shown to present a record high oscillation frequency of up to 17.4 MHz with a propagation time of 5.6 ns at a 12-V working voltage. The CNT film-based ROs were used as carrier-wave generators in radio-frequency systems to demonstrate a complete signal transmission process. These results suggest that CNT thin film-based FETs and integrated circuits may soon find their way to radio-frequency applications with a frequency band of 13.56 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.

    Article  Google Scholar 

  2. Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S.-J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

    Article  Google Scholar 

  3. Peng, L.-M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.

    Article  Google Scholar 

  4. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    Article  Google Scholar 

  5. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    Article  Google Scholar 

  6. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  Google Scholar 

  7. Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

    Article  Google Scholar 

  8. Jin, S. H.; Shin, J.; Chao, I.-T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J.-H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.

    Article  Google Scholar 

  9. Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

    Article  Google Scholar 

  10. Zhang, P. P.; Qiu, C. G.; Zhang, Z. Y.; Ding, L.; Chen, B. Y.; Peng, L.-M. Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res. 2016, 9, 1785–1794.

    Article  Google Scholar 

  11. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of singlewalled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  Google Scholar 

  12. LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

    Article  Google Scholar 

  13. Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

    Article  Google Scholar 

  14. Wu, J.; Antaris, A.; Gong, M.; Dai, H. J. Top-down patterning and self-assembly for regular arrays of semiconducting singlewalled carbon nanotubes. Adv. Mater. 2014, 26, 6151–6156.

    Article  Google Scholar 

  15. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  16. Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 2010, 22, 2698–2701.

    Article  Google Scholar 

  17. Wang, H. L.; Mei, J. G.; Liu, P.; Schmidt, K.; Jiménez-Osés, G.; Osuna, S.; Fang, L.; Tassone, C. J.; Zoombelt, A. P.; Sokolov, A. N. et al. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. ACS Nano 2013, 7, 2659–2668.

    Article  Google Scholar 

  18. Han, J.; Ji, Q. Y.; Qiu, S.; Li, H. B.; Zhang, S. X.; Jin, H. H.; Li, Q. W. A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers. Chem. Commun. 2015, 51, 4712–4714.

    Google Scholar 

  19. Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

    Article  Google Scholar 

  20. Sun, D.-M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.

    Article  Google Scholar 

  21. Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  22. Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–949.

    Article  Google Scholar 

  23. Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emergy, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.

    Article  Google Scholar 

  24. Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L.-M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

    Article  Google Scholar 

  25. Cao, Q.; Kim, H.-S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  Google Scholar 

  26. Sun, D.-M.; Timmermans, M. Y.; Kaskela, A.; Nasibulin, A. G.; Kishimoto, S.; Mizutani, T.; Kauppinen, E. I.; Ohno, Y. Mouldable all-carbon integrated circuits. Nat. Commun. 2013, 4, 2302.

    Google Scholar 

  27. Wang, H.; Yu, L. L.; Lee, Y.-H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  Google Scholar 

  28. Rizzi, L. G.; Bianchi, M.; Behnam, A.; Carrion, E.; Guerriero, E.; Polloni, L.; Pop, E.; Sordan, R. Cascading wafer-scale integrated graphene complementary inverters under ambient conditions. Nano Lett. 2012, 12, 3948–3953.

    Article  Google Scholar 

  29. Guerriero, E.; Polloni, L.; Bianchi, M.; Behnam, A.; Carrion, E.; Rizzi, L. G.; Pop, E.; Sordan, R. Gigahertz integrated graphene ring oscillators. ACS Nano 2013, 7, 5588–5594.

    Article  Google Scholar 

  30. Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

    Article  Google Scholar 

  31. Unalan, H. E.; Fanchini, G.; Kanwal, A.; Du Pasquier, A.; Chhowalla, M. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett. 2006, 6, 677–682.

    Article  Google Scholar 

  32. Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z. B.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869.

    Article  Google Scholar 

  33. Mizutani, T.; Okigawa, Y.; Ono, Y.; Kishimoto, S.; Ohno, Y. Medium scale integrated circuits using carbon nanotube thin film transistors. Appl. Phys. Express 2010, 3, 115101.

    Article  Google Scholar 

  34. Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.

    Article  Google Scholar 

  35. Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.

    Article  Google Scholar 

  36. Ha, M. J.; Seo, J.-W. T.; Prabhumirashi, P. L.; Zhang, W.; Geier, M. L.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 µs stage delays. Nano Lett. 2013, 13, 954–960.

    Article  Google Scholar 

  37. Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

    Google Scholar 

  38. Xu, W. W.; Liu, Z.; Zhao, J. W.; Xu, W. Y.; Gu, W. B.; Zhang, X.; Qian, L.; Cui, Z. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale 2014, 6, 14891–14897.

    Article  Google Scholar 

  39. Yu, W. J.; Kim, U. J.; Kang, B. R.; Lee, I. H.; Lee, E-H.; Lee, Y. H. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 2009, 9, 1401–1405.

    Article  Google Scholar 

  40. Derenskyi, V.; Gomulya, W.; Rios, J. M. S.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A. et al. Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio. Adv. Mater. 2014, 26, 5969–5975.

    Article  Google Scholar 

  41. Schießl, S. P.; Fröhlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, M.; Zaumseil, J. Polymer-sorted semiconducting carbon nanotube networks for highperformance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689.

    Article  Google Scholar 

  42. Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0201901), the National Science Foundation of China (Nos. 61376126, 61321001 and 61427901), and the Beijing Municipal Science and Technology Commission (No. D161100002616001-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Zhang or Lian-Mao Peng.

Electronic supplementary material

12274_2017_1632_MOESM1_ESM.pdf

Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ding, L., Chen, H. et al. Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Res. 11, 300–310 (2018). https://doi.org/10.1007/s12274-017-1632-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1632-1

Keywords

Navigation