Skip to main content
Log in

Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-performance multiphoton-pumped lasers based on cesium lead halide perovskite nanostructures are promising for nonlinear optics and practical frequency upconversion devices in integrated photonics. However, the performance of such lasers is highly dependent on the quality of the material and cavity, which makes their fabrication challenging. Herein, we demonstrate that cesium lead halide perovskite triangular nanorods fabricated via vapor methods can serve as gain media and effective cavities for multiphoton-pumped lasers. We observed blue-shifts of the lasing modes in the excitation fluence-dependent lasing spectra at increased excitation powers, which fits well with the dynamics of Burstein–Moss shifts caused by the band filling effect. Moreover, efficient multiphoton lasing in CsPbBr3 nanorods can be realized in a wide excitation wavelength range (700–1,400 nm). The dynamics of multiphoton lasing were investigated by time-resolved photoluminescence spectroscopy, which indicated that an electron–hole plasma is responsible for the multiphoton-pumped lasing. This work could lead to new opportunities and applications for cesium lead halide perovskite nanostructures in frequency upconversion lasing devices and optical interconnect systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.

    Article  Google Scholar 

  2. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.

    Article  Google Scholar 

  3. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  Google Scholar 

  4. Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

    Article  Google Scholar 

  5. Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

    Article  Google Scholar 

  6. Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yi, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

    Article  Google Scholar 

  7. Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H.-C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 2017, 10, 1223–1233.

    Article  Google Scholar 

  8. You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2015, 11, 75–81.

    Article  Google Scholar 

  9. Li, J. Q.; Bade, S. G. R.; Shan, X.; Yu, Z. B. Single-layer light-emitting diodes using organometal halide perovskite/ poly(ethylene oxide) composite thin films. Adv. Mater. 2015, 27, 5196–5202.

    Article  Google Scholar 

  10. Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644–15648.

    Article  Google Scholar 

  11. Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

    Article  Google Scholar 

  12. Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.

    Article  Google Scholar 

  13. Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.

    Article  Google Scholar 

  14. Tang, X. S.; Hu, Z. P.; Chen, W. W.; Xing, X.; Zang, Z. G.; Hu, W.; Qiu, J.; Du, J.; Leng, Y. X.; Jiang, X. F. et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462–468.

    Article  Google Scholar 

  15. Xing, G. C.; Liao, Y. L.; Wu, X. Y.; Chakrabortty, S.; Liu, X. F.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 2012, 6, 10835–10844.

    Article  Google Scholar 

  16. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  Google Scholar 

  17. Wang, Y.; Ta, V. D.; Gao, Y.; He, T. C.; Chen, R.; Mutlugun, E.; Demir, H. V.; Sun, H. D. Stimulated emission and lasing from CdSe/CdS/ZnS core–multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 2014, 26, 2954–2961.

    Article  Google Scholar 

  18. Zhang, L. C.; Wang, K.; Liu, Z.; Yang, G.; Shen, G. Z.; Lu, P. X. Two-photon pumped lasing in a single CdS microwire. Appl. Phys. Lett. 2013, 102, 211915.

    Article  Google Scholar 

  19. Yu, J. H.; Kwon, S. H.; Petrášek, Z.; Park, O. K.; Jun, S. W.; Shin, K.; Choi, M.; Park, Y. I.; Park, K.; Na, H. B. et al. Highresolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 2013, 12, 359–366.

    Article  Google Scholar 

  20. Zhang, C. F.; Zhang, F.; Zhu, T.; Cheng, A.; Xu, J.; Zhang, Q.; Mohney, S. E.; Henderson, R. H.; Wang, Y. A. Twophoton- pumped lasing from colloidal nanocrystal quantum dots. Opt. Lett. 2008, 33, 2437–2439.

    Article  Google Scholar 

  21. He, G. S.; Markowicz, P. P.; Lin, T. C.; Prasad, P. N. Observation of stimulated emission by direct three-photon excitation. Nature 2002, 415, 767–770.

    Article  Google Scholar 

  22. Wang, X.; Zhuang, X. J.; Wackenhut, F.; Li, Y. Y.; Pan, A. L.; Meixner, A. J. Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser Photonics Rev. 2016, 10, 835–842.

    Article  Google Scholar 

  23. Zhou, H.; Wang, X. X.; Zhuang, X. J.; Pan, A. L. Second harmonic generation and waveguide properties in perovskite Na0.5Bi0.5TiO3 nanowires. Opt. Lett. 2016, 41, 3803–3805.

    Article  Google Scholar 

  24. Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature. Phys. Rev. B. 2016, 93, 195202.

    Article  Google Scholar 

  25. Gu, Z. Y.; Wang, K. Y.; Sun, W. Z.; Li, J. K.; Liu, S.; Song, Q. H.; Xiao, S. M. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 2016, 4, 472–479.

    Article  Google Scholar 

  26. Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H. Two-photon absorption in organometallic bromide perovskites. ACS Nano 2015, 9, 9340–9346.

    Article  Google Scholar 

  27. Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

    Article  Google Scholar 

  28. Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. H.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.

    Article  Google Scholar 

  29. Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of twophoton- pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040–4046.

    Article  Google Scholar 

  30. Gradečak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.

    Article  Google Scholar 

  31. Qian, F.; Li, Y.; Gradečak, S.; Park, H. G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701–706.

    Article  Google Scholar 

  32. Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.

    Article  Google Scholar 

  33. Liu, X. W.; Xu, P. F.; Wu, Y. P.; Yang, Z. Y.; Meng, C.; Yang, W. S.; Li, J. B.; Wang, D. L.; Liu, X.; Yang, Q. Control, optimization and measurement of parameters of semiconductor nanowires lasers. Nano Energy 2015, 14, 340–354.

    Article  Google Scholar 

  34. Zhou, H.; Yuan, S. P.; Wang, X. X.; Xu, T.; Wang, X.; Li, H. L.; Zheng, W. H.; Fan, P.; Li, Y. Y.; Sun, L. T. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189–1195.

    Article  Google Scholar 

  35. He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330.

    Article  Google Scholar 

  36. Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 2013, 7, 205–209.

    Article  Google Scholar 

  37. Zhang, Q. L.; Zhu, X. L.; Li, Y. Y.; Liang, J. W.; Chen, T. R.; Fan, P.; Zhou, H.; Hu, W.; Zhuang, X. J.; Pan, A. L. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev. 2016, 10, 458–464.

    Article  Google Scholar 

  38. Kawamura, K.-I.; Maekawa, K.; Yanagi, H.; Hirano, M.; Hosono, H. Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse. Thin Solid Films 2003, 445, 182–185.

    Article  Google Scholar 

  39. Kamat, P. V.; Dimitrijevic, N. M.; Nozik, A. J. Dynamic Burstein–Moss shift in semiconductor colloids. J. Phys. Chem. 1989, 93, 2873–2875.

    Article  Google Scholar 

  40. Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743.

    Article  Google Scholar 

  41. Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core–shell nanowire lasers. Nano Lett. 2009, 9, 112–116.

    Article  Google Scholar 

  42. Liao, Q.; Hu, K.; Zhang, H. H.; Wang, X. D.; Yao, J. N.; Fu, H. B. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 2015, 27, 3405–3410.

    Article  Google Scholar 

  43. Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

    Article  Google Scholar 

  44. Muñoz, M.; Pollak, F. H.; Kahn, M.; Ritter, D.; Kronik, L.; Cohen, G. M. Burstein–Moss shift of n-doped In0.53Ga0.47As/InP. Phys. Rev. B. 2001, 63, 233302.

    Article  Google Scholar 

  45. Johnson, J. C.; Yan, H. Q.; Yang, P. D.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.

    Article  Google Scholar 

  46. Campillo, A. J.; Chang, R. K. Optical Processes in Microcavities; World Scientific: Singapore, 1996.

    Google Scholar 

  47. Johnson, J. C.; Knutsen, K. P.; Yan, H. Q.; Law, M.; Zhang, Y. F.; Yang, P. D.; Saykally, R. J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 2004, 4, 197–204.

    Article  Google Scholar 

  48. Röder, R.; Wille, M.; Geburt, S.; Rensberg, J.; Zhang, M. Y.; Lu, J. G.; Capasso, F.; Buschlinger, R.; Peschel, U.; Ronning, C. Continuous wave nanowire lasing. Nano Lett. 2013, 13, 3602–3606.

    Article  Google Scholar 

Download references

Acknowledgements

All authors are grateful to the National Natural Science Foundation of China (Nos. 51525202, 61574054, 61505051 and 61474040), the Hunan province science and technology plan (Nos. 2014FJ2001 and 2014TT1004), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wang or Anlian Pan.

Electronic Supplementary Material

12274_2017_1551_MOESM1_ESM.pdf

Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, H., Yuan, S. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 10, 3385–3395 (2017). https://doi.org/10.1007/s12274-017-1551-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1551-1

Keywords

Navigation