Skip to main content
Log in

Rapid growth of angle-confined large-domain graphene bicrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the chemical vapor deposition growth of large-area graphene polycrystalline thin films, the coalescence of randomly oriented graphene domains results in a high density of uncertain grain boundaries (GBs). The structures and properties of various GBs are highly dependent on the misorientation angles between the graphene domains, which can significantly affect the performance of the graphene films and impede their industrial applications. Graphene bicrystals with a specific type of GB can be synthesized via the controllable growth of graphene domains with a predefined lattice orientation. Although the bicrystal has been widely investigated for traditional bulk materials, no successful synthesis strategy has been presented for growing two-dimensional graphene bicrystals. In this study, we demonstrate a simple approach for growing well-aligned large-domain graphene bicrystals with a confined tilt angle of 30° on a facilely recrystallized single-crystal Cu (100) substrate. Control of the density of the GBs with a misorientation angle of 30° was realized via the controllable rapid growth of subcentimeter graphene domains with the assistance of a cooperative catalytic surface-passivation treatment. The large-area production of graphene bicrystals consisting of the sole specific GBs with a tunable density provides a new material platform for fundamental studies and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  2. Addou, R.; Batzill, M. Defects and domain boundaries in self-assembled terephthalic acid (TPA) monolayers on CVD-grown graphene on Pt (111). Langmuir 2013, 29, 6354–6360.

    Article  Google Scholar 

  3. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  Google Scholar 

  4. Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

    Article  Google Scholar 

  5. Lee, G.-H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

    Article  Google Scholar 

  6. Carlsson, J. M.; Ghiringhelli, L. M.; Fasolino, A. Theory and hierarchical calculations of the structure and energetics of [0001]_tilt grain boundaries in graphene. Phys. Rev. B 2011, 84, 165423.

    Article  Google Scholar 

  7. Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 2811.

    Article  Google Scholar 

  8. Zhang, X. Y.; Xu, Z. W.; Yuan, Q. H.; Xin, J.; Ding, F. The favourable large misorientation angle grain boundaries in graphene. Nanoscale 2015, 7, 20082–20088.

    Article  Google Scholar 

  9. Yazyev, O. V.; Chen, Y. P. Polycrystalline graphene and other two-dimensional materials. Nat. Nanotechnol. 2014, 9, 755–767.

    Article  Google Scholar 

  10. Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

    Article  Google Scholar 

  11. Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142–2146.

    Article  Google Scholar 

  12. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  13. Lin, P.; Palumbo, G.; Harase, J.; Aust, K. T. Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3% Si alloy. Acta Mater. 1996, 44, 4677–4683.

    Article  Google Scholar 

  14. Gertsman, V. Y.; Bruemmer, S. M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 2001, 49, 1589–1598.

    Article  Google Scholar 

  15. Chun, H.; Na, S.-M.; Mudivarthi, C.; Flatau, A. B. The role of misorientation and coincident site lattice boundaries in Goss-textured Galfenol rolled sheet. J. Appl. Phys. 2010, 107, 09A960.

    Article  Google Scholar 

  16. Saylor, D. M.; Rohrer, G. S. Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals. J. Am. Ceram. Soc. 1999, 82, 1529–1536.

    Article  Google Scholar 

  17. Sato, Y.; Yamamoto, T.; Ikuhara, Y. Atomic structures and electrical properties of ZnO grain boundaries. J. Am. Ceram. Soc. 2007, 90, 337–357.

    Article  Google Scholar 

  18. Todt, V. R.; Zhang, X. F.; Miller, D. J.; St. Louis-Weber, M.; Dravid, V. P. Controlled growth of bulk bicrystals and the investigation of microstructure-property relations of YBa2Cu3Ox grain boundaries. App. Phys. Lett. 1996, 69, 3746–3748.

    Article  Google Scholar 

  19. Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

    Article  Google Scholar 

  20. Yuan, Q. H.; Song, G. Y.; Sun, D. Y.; Ding, F. Formation of graphene grain boundaries on Cu(100) surface and a route towards their elimination in chemical vapor deposition growth. Sci. Rep. 2014, 4, 6541.

    Article  Google Scholar 

  21. Wang, H.; Xu, X. Z.; Li, J. Y.; Lin, L.; Sun, L. Z.; Sun, X.; Zhao, S. L.; Tan, C. W.; Chen, C.; Dang, W. H. et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. 2016, 28, 8968–8974.

    Article  Google Scholar 

  22. Barrett, C. S.; Massalski, T. B. Structure of Metals; Pergamon: New York, 1980.

    Google Scholar 

  23. Lin, L.; Li, J. Y.; Ren, H. Y.; Koh, A. L.; Kang, N.; Peng, H. L.; Xu, H. Q.; Liu, Z. F. Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 2016, 10, 2922–2929.

    Article  Google Scholar 

  24. Lin, L.; Sun, L. Z.; Zhang, J. C.; Sun, J. Y.; Koh, A. L.; Peng, H. L.; Liu, Z. F. Rapid growth of large single-crystalline graphene via second passivation and multistage carbon supply. Adv. Mater. 2016, 28, 4671–4677.

    Article  Google Scholar 

  25. Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.

    Article  Google Scholar 

  26. Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    Article  Google Scholar 

  27. Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.

    Article  Google Scholar 

  28. Murdock, A. T.; Koos, A.; Britton, T. B.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

    Article  Google Scholar 

  29. Merchant, H. D.; Liu, W. C.; Giannuzzi, L. A.; Morris, J. G. Grain structure of thin electrodeposited and rolled copper foils. Mater. Charact. 2004, 53, 335–360.

    Article  Google Scholar 

  30. Wilson, N. R.; Marsden, A. J.; Saghir, M.; Bromley, C. J.; Schaub, R.; Costantini, G.; White, T. W.; Partridge, C.; Barinov, A.; Dudin, P. et al. Weak mismatch epitaxy and structural feedback in graphene growth on copper foil. Nano Res. 2013, 6, 99–112.

    Article  Google Scholar 

  31. Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062–2065.

    Article  Google Scholar 

  32. Rasool, H. I.; Song, E. B.; Mecklenburg, M.; Regan, B. C.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Atomic-scale characterization of graphene grown on copper (100) single crystals. J. Am. Chem. Soc. 2011, 133, 12536–12543.

    Article  Google Scholar 

  33. Ogawa, Y.; Hu, B. S.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-I.; Mizuno, S.; Hibino, H.; Ago, H. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. Lett. 2012, 3, 219–226.

    Article  Google Scholar 

  34. Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L.-C.; Ma, X.-L.; Ding, F.; Cheng, H.-M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

    Article  Google Scholar 

  35. Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

    Article  Google Scholar 

  36. Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

    Article  Google Scholar 

  37. Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.

    Article  Google Scholar 

  38. N'Diaye, A. T.; Van Gastel, R.; Martínez-Galera, A. J.; Coraux, J.; Hattab, H.; Wall, D.; Zu Heringdorf, F.-J. M.; Horn-von Hoegen, M.; Gómez-Rodríguez, J. M.; Poelsema, B. et al. In situ observation of stress relaxation in epitaxial graphene. New J. Phys. 2009, 11, 113056.

    Article  Google Scholar 

  39. Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597.

    Article  Google Scholar 

  40. Chen, H.; Zhu, W. G.; Zhang, Z. Y. Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys. Rev. Lett. 2010, 104, 186101.

    Article  Google Scholar 

  41. Yuan, Q. H.; Yakobson, B. I.; Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 2014, 5, 3093–3099.

    Article  Google Scholar 

  42. Mohsin, A.; Liu, L.; Liu, P. Z.; Deng, W.; Ivanov, I. N.; Li, G. L.; Dyck, O. E.; Duscher, G.; Dunlap, J. R.; Xiao, K. et al. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 2013, 7, 8924–8931.

    Article  Google Scholar 

  43. Magnuson, C. W.; Kong, X. H.; Ji, H. X.; Tan, C.; Li, H. F.; Piner, R.; Ventrice, C. A.; Ruoff, R. S. Copper oxide as a “self-cleaning” substrate for graphene growth. J. Mater. Res. 2014, 29, 403–409.

    Article  Google Scholar 

  44. Han, G. H.; Güneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H.-J.; Choi, J.-Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.

    Article  Google Scholar 

  45. Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614–3623.

    Article  Google Scholar 

  46. Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.

    Article  Google Scholar 

  47. Becker, O. M.; Ben-Shaul, A. Role and mechanism of island formation in chemisorption. Phys. Rev. Lett. 1988, 61, 2859–2862.

    Article  Google Scholar 

  48. Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

    Article  Google Scholar 

  49. Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

    Article  Google Scholar 

  50. Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

    Article  Google Scholar 

  51. Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21173004, 51520105003, 51432002, 21222303 and 51362029) and the National Basic Research Program of China (Nos. 2014CB932500, 2013CB932603, 2012CB933404, 2011CB933003, and 2011CB921904), the National Program for Support of Top-Notch Young Professionals, and Beijing Municipal Science & Technology Commission (No. Z161100002116002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailin Peng or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Wang, H., Lin, L. et al. Rapid growth of angle-confined large-domain graphene bicrystals. Nano Res. 10, 1189–1199 (2017). https://doi.org/10.1007/s12274-017-1534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1534-2

Keywords

Navigation