Skip to main content
Log in

Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A major clinical translational challenge in nanomedicine is the potential of toxicity associated with the uptake and long-term retention of non-degradable nanoparticles (NPs) in major organs. The development of inorganic NPs that undergo renal clearance could potentially resolve this significant biosafety concern. However, it remains unclear whether inorganic NPs that can be excreted by the kidneys remain capable of targeting tumors with poor permeability. Glioblastoma multiforme, the most malignant orthotopic brain tumor, presents a unique challenge for NP delivery because of the blood-brain barrier and robust blood-tumor barrier of reactive microglia and macroglia in the tumor microenvironment. Herein, we used an orthotopic murine glioma model to investigate the passive targeting of glutathione-coated gold nanoparticles (AuNPs) of 3 nm in diameter that undergo renal clearance and 18-nm AuNPs that fail to undergo renal clearance. Remarkably, we report that 3-nm AuNPs were able to target intracranial tumor tissues with higher efficiency (2.3× relative to surrounding non-tumor normal brain tissues) and greater specificity (3.0×) than did the larger AuNPs. Pharmacokinetics studies suggested that the higher glioma targeting ability of the 3-nm AuNPs may be attributed to the longer retention time in circulation. The total accumulation of the 3-nm AuNPs in major organs was significantly less (8.4×) than that of the 18-nm AuNPs. Microscopic imaging of blood vessels and renal-clearable AuNPs showed extravasation of NPs from the leaky blood-tumor barrier into the tumor interstitium. Taken together, our results suggest that the 3-nm AuNPs, characterized by enhanced permeability and retention, are able to target brain tumors and undergo renal clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

    Google Scholar 

  2. Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.

    Article  Google Scholar 

  3. Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822.

    Article  Google Scholar 

  4. Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

    Article  Google Scholar 

  5. Goldmann, E. The growth of malignant disease in man and the lower animals: With special reference to the vascular system. Lancet 1907, 170, 1236–1240.

    Article  Google Scholar 

  6. Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285, 1182–1186.

    Article  Google Scholar 

  7. Dvorak, H. F.; Brown, L. F.; Detmar, M.; Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 1995, 146, 1029–1039.

    Google Scholar 

  8. Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257.

    Article  Google Scholar 

  9. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

    Article  Google Scholar 

  10. Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612.

    Article  Google Scholar 

  11. Groothuis, D. R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro Oncol. 2000, 2, 45–59.

    Google Scholar 

  12. Pardridge, W. M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRX 2005, 2, 3–14.

    Article  Google Scholar 

  13. Béduneau, A.; Saulnier, P.; Benoit, J.-P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007, 28, 4947–4967.

    Article  Google Scholar 

  14. Yan, H.; Wang, L.; Wang, J.; Weng, X.; Lei, H.; Wang, X.; Jiang, L.; Zhu, J.; Lu, W.; Wei, X. et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 2012, 6, 410–420.

    Article  Google Scholar 

  15. Cole, A. J.; David, A. E.; Wang, J. X.; Galbán, C. J.; Yang, V. C. Magnetic brain tumor targeting and biodistribution of long-circulating peg-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 2011, 32, 6291–6301.

    Article  Google Scholar 

  16. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Article  Google Scholar 

  17. Chauhan, R. P.; Mathur, R.; Singh, G.; Bag, N.; Singh, S.; Chuttani, K.; Kumar, B. S. H.; Agrawal, S. K.; Mishra, A. K. Evaluation of biotinylated magnetic nanoparticles for tumour imaging. J. Mater. Sci. 2013, 48, 3913–3925.

    Article  Google Scholar 

  18. Yang, X. Q.; Hong, H.; Grailer, J. J.; Rowland, I. J.; Javadi, A.; Hurley, S. A.; Xiao, Y. L.; Yang, Y.; Zhang, Y.; Nickles, R. J. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011, 32, 4151–4160.

    Article  Google Scholar 

  19. Meyers, J. D.; Cheng, Y.; Broome, A. M.; Agnes, R. S.; Schluchter, M. D.; Margevicius, S.; Wang, X. N.; Kenney, M. E.; Burda, C.; Basilion, J. P. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact. 2015, 32, 448–457.

    Article  Google Scholar 

  20. Hu, H.; Huang, P.; Weiss, O. J.; Yan, X. F.; Yue, X. Y.; Zhang, M. G.; Tang, Y. X.; Nie, L. M.; Ma, Y.; Niu, G. PET and NIR optical imaging using self-illuminating 64Cudoped chelator-free gold nanoclusters. Biomaterials 2014, 35, 9868–9876.

    Article  Google Scholar 

  21. Goel, S.; Chen, F.; Hong, H.; Valdovinos, H. F.; Hernandez, R.; Shi, S. X.; Barnhart, T. E.; Cai, W. B. VEGF121-conjugated mesoporous silica nanoparticle: A tumor targeted drug delivery system. ACS Appl. Mater. Interfaces 2014, 6, 21677–21685.

    Google Scholar 

  22. Chakravarty, R.; Goel, S.; Hong, H.; Chen, F.; Valdovinos, H. F.; Hernandez, R.; Barnhart, T. E.; Cai, W. B. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and pet image-guided drug delivery. Nanomedicine 2015, 10, 1233–1246.

    Article  Google Scholar 

  23. Chen, K.; Li, Z.-B.; Wang, H.; Cai, W. B.; Chen, X. Y. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2235–2244.

    Article  Google Scholar 

  24. Cai, W. B.; Chen, K.; Li, Z.-B.; Gambhir, S. S.; Chen, X. Y. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 2007, 48, 1862–1870.

    Article  Google Scholar 

  25. Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. 2012, 124, 9956–9959.

    Article  Google Scholar 

  26. Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

    Article  Google Scholar 

  27. Gao, J.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T.; Gambhir, S. S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett. 2011, 12, 281–286.

  28. Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Wan, D. H.; Cutler, C.; Xia, Y. N. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett. 2013, 13, 581–585.

    Article  Google Scholar 

  29. Son, Y. J.; Jang, J.-S.; Cho, Y. W.; Chung, H.; Park, R.-W.; Kwon, I. C.; Kim, I.-S.; Park, J. Y.; Seo, S. B.; Park, C. R. et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J. Control. Release 2003, 91, 135–145.

    Article  Google Scholar 

  30. Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H. Early phase tumor accumulation of macromolecules: A great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res. 1998, 89, 307–314.

    Article  Google Scholar 

  31. Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.

    Article  Google Scholar 

  32. Storm, G.; Belliot, S. O.; Daemen, T.; Lasic, D. D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Del. Rev. 1995, 17, 31–48.

    Article  Google Scholar 

  33. Gibaud, S.; Demoy, M.; Andreux, J. P.; Weingarten, C.; Gouritin, B.; Couvreur, P. Cells involved in the capture of nanoparticles in hematopoietic organs. J. Pharm. Sci. 1996, 85, 944–950.

    Article  Google Scholar 

  34. Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 2002, 54, 631–651.

    Article  Google Scholar 

  35. De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133–149.

    Article  Google Scholar 

  36. Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.

    Article  Google Scholar 

  37. Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 12572–12576.

    Article  Google Scholar 

  38. Black, K. L.; Ningaraj, N. S. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 2004, 11, 165–173.

    Google Scholar 

  39. Zheng, J.; Ding, Y.; Tian, B. Z.; Wang, Z. L.; Zhuang, X. W. Luminescent and raman active silver nanoparticles with polycrystalline structure. J. Am. Chem. Soc. 2008, 130, 10472–10473.

    Article  Google Scholar 

  40. Mashimo, T.; Pichumani, K.; Vemireddy, V.; Hatanpaa, K. J.; Singh, D. K.; Sirasanagandla, S.; Nannepaga, S.; Piccirillo, S. G.; Kovacs, Z.; Foong, C. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014, 159, 1603–1614.

    Article  Google Scholar 

  41. Zhou, C.; Long, M.; Qin, Y. P.; Sun, X. K.; Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem., Int. Ed. 2011, 50, 3168–3172.

    Article  Google Scholar 

  42. Tang, S. H.; Peng, C. Q.; Xu, J.; Du, B. J.; Wang, Q. X.; Vinluan, R. D.; Yu, M. X.; Kim, M. J.; Zheng, J. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem., Int. Ed. 2016, 55, 16039–16043.

    Article  Google Scholar 

  43. Zhou, C.; Hao, G. Y.; Thomas, P.; Liu, J. B.; Yu, M. X.; Sun, S. S.; Öz, O. K.; Sun, X. K.; Zheng, J. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. 2012, 124, 10265–10269.

    Article  Google Scholar 

  44. Zhu, Y.; Parada, L. F. The molecular and genetic basis of neurological tumours. Nat. Rev. Cancer 2002, 2, 616–626.

    Article  Google Scholar 

  45. Van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M. C.; Wesseling, P.; Wurdinger, T.; de Vries, H. E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12.

    Article  Google Scholar 

  46. Leten, C.; Struys, T.; Dresselaers, T.; Himmelreich, U. In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models. J. Neurooncol. 2014, 119, 297–306.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by CPRIT (Nos. RP140544 and RP160866), NIH (No. 1R01DK103363) and a start-up fund from the University of Texas at Dallas to J. Z., UTSW CRI start-up funds, UTSW High Impact/High Risk Grant and NINDS K99/R00 (No. R00NS073735) to W. P. G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo-Ping Ge or Jie Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Gao, X., Xu, J. et al. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 10, 1366–1376 (2017). https://doi.org/10.1007/s12274-017-1472-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1472-z

Keywords

Navigation