Skip to main content
Log in

Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Light management and electrical isolation are essential for the majority of optoelectronic nanowire (NW) devices. Here, we present a cost-effective technique, based on vapor-phase deposition of parylene-C and subsequent annealing, that provides conformal encapsulation, anti-reflective coating, improved optical properties, and electrical insulation for GaAs nanowires. The process presented allows facile encapsulation and insulation that is suitable for any nanowire structure. In particular, the parylene-C encapsulation functions as an efficient antireflection coating for the nanowires, with reflectivity down to <1% in the visible spectrum. Furthermore, the parylene-C coating increases photoluminescence intensity, suggesting improved light guiding to the NWs. Finally, based on this process, a NW LED was fabricated, which showed good diode performance and a clear electroluminescence signal. We believe the process can expand the fabrication possibilities and improve the performance of optoelectronic nanowire devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, F.; Gradečak, S.; Li, Y; Wen, C.-Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

    Article  Google Scholar 

  2. Guo, W.; Banerjee, A.; Bhattacharya, P.; Ooi, B. S. InGaN/ GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl. Phys. Lett. 2011, 98, 193102.

    Article  Google Scholar 

  3. Hong, Y. J.; Lee, C.-H.; Park, J. B.; An, S. J.; Yi, G.-C. GaN nanowire/thin film vertical structure p–n junction lightemitting diodes. Appl. Phys. Lett. 2013, 103, 261116.

    Article  Google Scholar 

  4. Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

    Article  Google Scholar 

  5. Aberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Bjork, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovolt. 2016, 6, 185–190.

  6. Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fä lt, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1050–1061.

    Article  Google Scholar 

  7. Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2009, 2, 035004.

    Article  Google Scholar 

  8. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

    Article  Google Scholar 

  9. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  10. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Roomtemperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  11. Perraud, S.; Poncet, S.; Noël, S.; Levis, M.; Faucherand, P.; Rouviè re, E.; Thony, P.; Jaussaud, C.; Delsol, R. Full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1568–1571.

    Article  Google Scholar 

  12. Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

    Article  Google Scholar 

  13. Umar, A.; Hahn, Y.-B. Ultraviolet-emitting ZnO nanostructures on steel alloy substrates: Growth and properties. Cryst. Growth Des. 2008, 8, 2741–2747.

    Article  Google Scholar 

  14. Dhaka, V.; Haggren, T.; Jussila, H.; Jiang, H.; Kauppinen, E.; Huhtio, T.; Sopanen, M.; Lipsanen, H. High quality GaAs nanowires grown on glass substrates. Nano Lett. 2012, 12, 1912–1918.

    Article  Google Scholar 

  15. Novotny, C. J.; Yu, E. T.; Yu, P. K. L. InP nanowire/polymer hybrid photodiode. Nano Lett. 2008, 8, 775–779.

    Article  Google Scholar 

  16. Haggren, T.; Perros, A.; Dhaka, V.; Huhtio, T.; Jussila, H.; Jiang, H.; Ruoho, M.; Kakko, J. P.; Kauppinen, E.; Lipsanen, H. GaAs nanowires grown on Al-doped ZnO buffer layer. J. Appl. Phys. 2013, 114, 084309.

    Article  Google Scholar 

  17. Alet, P.-J.; Yu, L. W.; Patriarche, G.; Palacin, S.; Roca i Cabarrocas, P. In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on ITO. J. Mater. Chem. 2008, 18, 5187–5189.

    Article  Google Scholar 

  18. Guo, W.; Banerjee, A.; Zhang, M.; Bhattacharya, P. Barrier height of Pt–InxGa1-x N (0=x=0.5) nanowire Schottky diodes. Appl. Phys. Lett. 2011, 98, 183116.

    Article  Google Scholar 

  19. Abramson, A. R.; Kim, W. C.; Huxtable, S. T.; Yan, H. Q.; Wu, Y. Y.; Majumdar, A.; Tien, C.-L.; Yang, P. D. Fabrication and characterization of a nanowire/polymerbased nanocomposite for a prototype thermoelectric device. J. Microelectromech. Syst. 2004, 13, 505–313.

    Article  Google Scholar 

  20. Weisse, J. M.; Marconnet, A. M.; Kim, D. R.; Rao, P. M.; Panzer, M. A.; Goodson, K. E.; Zheng, X. L. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res. Lett. 2012, 7, 554.

    Article  Google Scholar 

  21. Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21 Suppl 3, A558–A575.

    Article  Google Scholar 

  22. Jeong, Y.; Ratier, B.; Moliton, A.; Guyard, L. UV–visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation. Synth. Met. 2002, 127, 189–193.

    Article  Google Scholar 

  23. Gaynor, J. F.; Desu, S. B. Optical properties of polymeric thin films grown by chemical vapor deposition. J. Mater. Res. 1996, 11, 236–242.

    Article  Google Scholar 

  24. Niegisch, W. D. Crystallography of poly-p-xylylene. J. Appl. Phys. 1966, 37, 4041–4046.

    Article  Google Scholar 

  25. Kirkpatrich, D. E.; Wunderlich, B. On the reversibility of the crystalline phase transitions of poly(p-xylylene). J. Polym. Sci. Part B Polym. Phys. 1986, 24, 931–933.

    Article  Google Scholar 

  26. Golda-Cepa, M.; Engvall, K.; Kotarba, A. Development of crystalline–amorphous parylene C structure in micro- and nano-range towards enhanced biocompatibility: The importance of oxygen plasma treatment time. RSC Adv. 2015, 5, 48816–48821.

    Article  Google Scholar 

  27. Maggioni, G.; Campagnaro, A.; Carturan, S.; Quaranta, A. Dye-doped parylene-based thin film materials: Application to luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2013, 108, 27–37.

    Article  Google Scholar 

  28. Haggren, T.; Kakko, J.-P.; Jiang, H.; Dhaka, V.; Huhtio, T.; Lipsanen, H. Effects of Zn doping on GaAs nanowires. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, Canada, 2014, pp 825–829.

    Chapter  Google Scholar 

  29. Lysov, A.; Offer, M.; Gutsche, C.; Regolin, I.; Topaloglu, S.; Geller, M.; Prost, W.; Tegude, F.-J. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology 2011, 22, 85702.

    Article  Google Scholar 

  30. Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; Fontcuberta i Morral, A. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 2010, 97, 201907.

    Article  Google Scholar 

  31. Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Jagadish, C. Insights into single semiconductor nanowire heterostructures using time-resolved photoluminescence. Semicond. Sci. Technol. 2010, 25, 024010.

    Article  Google Scholar 

  32. Haggren, T.; Jiang, H.; Kakko, J.-P.; Huhtio, T.; Dhaka, V.; Kauppinen, E.; Lipsanen, H. Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers. Appl. Phys. Lett. 2014, 105, 033114.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Nwires project (Academy of Finland project #284529) and by the Moppi project of Aalto Energy Efficiency Program. T. H. wishes to thank Emil Aaltonen Foundation, Tekniikan Edistämissäätiö, Ulla Tuominen Foundation and Walter Ahlström Foundation for supporting the research. Majority of the work was performed in the Micronova clean room facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuomas Haggren or Harri Lipsanen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haggren, T., Shah, A., Autere, A. et al. Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties. Nano Res. 10, 2657–2666 (2017). https://doi.org/10.1007/s12274-017-1468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1468-8

Keywords

Navigation