Skip to main content
Log in

Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible logic circuits and memory with ultra-low static power consumption are in great demand for battery-powered flexible electronic systems. Here, we show that a flexible nonvolatile logic-in-memory circuit enabling normally-off computing can be implemented using a poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (pV3D3)-based memristor array. Although memristive logic-in-memory circuits have been previously reported, the requirements of additional components and the large variation of memristors have limited demonstrations to simple gates within a few operation cycles on rigid substrates only. Using memristor-aided logic (MAGIC) architecture requiring only memristors and pV3D3-memristor with good uniformity on a flexible substrate, for the first time, we experimentally demonstrated our implementation of MAGIC-NOT and -NOR gates during multiple cycles and even under bent conditions. Other functions, such as OR, AND, NAND, and a half adder, are also realized by combinations of NOT and NOR gates within a crossbar array. This research advances the development of novel computing architecture with zero static power consumption for batterypowered flexible electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.; Lu, B. W.; Chen, Y. H.; Feng, X. Breathable and stretchable temperature sensors inspired by skin. Sci. Rep. 2015, 5, 11505.

    Article  Google Scholar 

  2. Fiore, V.; Battiato, P.; Abdinia, S.; Jacobs, S.; Chartier, I.; Coppard, R.; Klink, G.; Cantatore, E.; Ragonese, E.; Palmisano, G. An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate. IEEE Trans. Circuits Syst. I: Reg. Papers 2015, 62, 1668–1677.

    Article  Google Scholar 

  3. Kim, R. H.; Kim, H. J.; Bae, I.; Hwang, S. K.; Velusamy, D. B.; Cho, S. M.; Takaishi, K.; Muto, T.; Hashizume, D.; Uchiyama, M. et al. Non-volatile organic memory with sub-millimetre bending radius. Nat. Commun. 2014, 5, 3583.

    Google Scholar 

  4. Kim, S. J.; Lee, J. S. Flexible organic transistor memory devices. Nano Lett. 2010, 10, 2884–2890.

    Article  Google Scholar 

  5. Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Schmid, G.; Dehm, C. Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates. Appl. Phys. Lett. 2003, 82, 4175–4177.

    Article  Google Scholar 

  6. Semiconductor Industry Association. http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/ (accessed Oct 20, 2016).

  7. Shahrjerdi, D.; Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 2013, 13, 315–320.

    Article  Google Scholar 

  8. Rojas, J. P.; Torres Sevilla, G. A.; Hussain, M. M. Can we build a truly high performance computer which is flexible and transparent? Sci. Rep. 2013, 3, 2609.

    Article  Google Scholar 

  9. Sevilla, G. A. T.; Rojas, J. P.; Fahad, H. M.; Hussain, A. M.; Ghanem, R.; Smith, C. E.; Hussain, M. M. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation. Adv. Mater. 2014, 26, 2794–2799.

    Article  Google Scholar 

  10. Hosseini, N. R.; Lee, J.-S. Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 2015, 9, 419–426.

    Article  Google Scholar 

  11. Son, D. I.; Kim, T. W.; Shim, J. H.; Jung, J. H.; Lee, D. U.; Lee, J. M.; Park, W. I.; Choi, W. K. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 2010, 10, 2441–2447.

    Article  Google Scholar 

  12. Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J. E.; Lee, J. Y.; Yoon, T. H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S. et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386.

    Article  Google Scholar 

  13. Ji, Y.; Cho, B.; Song, S.; Kim, T. W.; Choe, M.; Kahng, Y. H.; Lee, T. Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 2010, 22, 3071–3075.

    Article  Google Scholar 

  14. Chua, L. O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.

    Article  Google Scholar 

  15. Chua, L. O.; Kang, S. M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223.

    Article  Google Scholar 

  16. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  17. Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876.

    Article  Google Scholar 

  18. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  Google Scholar 

  19. Shin, S.; Kim, K.; Kang, S.-M. Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 2011, 10, 266–274.

    Article  Google Scholar 

  20. Matsunaga, S.; Hayakawa, J.; Ikeda, S.; Miura, K.; Endoh, T.; Ohno, H.; Hanyu, T. MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. In Proceedings of the Conference on Design, Automation and Test in Europe, Nice, France, 2009, pp 433–435.

    Google Scholar 

  21. Balatti, S.; Ambrogio, S.; Ielmini, D. Normally-off logic based on Resistive Switches—Part I: Logic gates. IEEE Trans. Electron Devices 2015, 62, 1831–1838.

    Article  Google Scholar 

  22. Cassinerio, M.; Ciocchini, N.; Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 2013, 25, 5975–5980.

    Article  Google Scholar 

  23. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E. G.; Kolodny, A.; Weiser, U. C. Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066.

    Article  Google Scholar 

  24. Sun, X. W.; Li, G. Q.; Ding, L. H.; Yang, N.; Zhang, W. F. Unipolar memristors enable “stateful” logic operations via material implication. Appl. Phys. Lett. 2011, 99, 072101.

    Article  Google Scholar 

  25. Shin, S.; Kim, K.; Kang, S.-M. Reconfigurable stateful NOR gate for large-scale logic-array integrations. IEEE Trans. Circuits Syst. II: Exp. Briefs 2011, 58, 442–446.

    Article  Google Scholar 

  26. Kvatinsky, S.; Belousov, D.; Liman, S.; Satat, G.; Wald, N.; Friedman, E. G.; Kolodny, A.; Weiser, U. C. MAGIC—memristor-aided logic. IEEE Trans. Circuits Syst. II: Exp. Briefs 2014, 61, 895–899.

    Article  Google Scholar 

  27. Talati, N.; Gupta, S.; Mane, P.; Kvatinsky, S. Logic design within memristive memories using Memristor-Aided loGIC (MAGIC). IEEE Trans. Nanotechnol. 2016, 15, 635–650.

    Article  Google Scholar 

  28. Siemon, A.; Breuer, T.; Aslam, N.; Ferch, S.; Kim, W.; van den Hurk, J.; Rana, V.; Hoffmann-Eifert, S.; Waser, R.; Menzel, S. et al. Realization of boolean logic functionality using redox-based memristive devices. Adv. Funct. Mater. 2015, 25, 6414–6423.

    Article  Google Scholar 

  29. Jang, B. C.; Seong, H.; Kim, S. K.; Kim, J. Y.; Koo, B. J.; Choi, J.; Yang, S. Y.; Im, S. G.; Choi, S. Y. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition. ACS Appl. Mater. Interfaces 2016, 8, 12951–12958.

    Article  Google Scholar 

  30. Choi, B. J.; Torrezan, A. C.; Strachan, J. P.; Kotula, P. G.; Lohn, A. J.; Marinella, M. J.; Li, Z. Y.; Williams, R. S.; Yang, J. J. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 2016, 26, 5290–5296.

    Article  Google Scholar 

  31. Wong, H. S. P.; Lee, H.-Y.; Yu, S. M.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F. T.; Tsai, M.-J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951–1970.

    Article  Google Scholar 

  32. Kimura, H.; Hanyu, T.; Kameyama, M.; Fujimori, Y.; Nakamura, T.; Takasu, H. Complementary ferroelectriccapacitor logic for low-power logic-in-memory VLSI. IEEE J. Solid-State Circuits 2004, 39, 919–926.

    Article  Google Scholar 

  33. Moon, H.; Seong, H.; Shin, W. C.; Park, W. T.; Kim, M.; Lee, S.; Bong, J. H.; Noh, Y. Y.; Cho, B. J.; Yoo, S. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635.

    Article  Google Scholar 

  34. Gleskova, H.; Wagner, S. Electron mobility in amorphous silicon thin-film transistors under compressive strain. Appl. Phys. Lett. 2001, 79, 3347–3349.

    Article  Google Scholar 

  35. Moon, T.; Jung, J.-C.; Han, Y.; Jeon, Y.; Koo, S.-M.; Kim, S. Flexible logic gates composed of Si-nanowire-based memristive switches. IEEE Trans. Electron Devices 2012, 59, 3288–3291.

    Article  Google Scholar 

  36. Alf, M. E.; Asatekin, A.; Barr, M. C.; Baxamusa, S. H.; Chelawat, H.; Ozaydin-Ince, G.; Petruczok, C. D.; Sreenivasan, R.; Tenhaeff, W. E.; Trujillo, N. J. et al. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 2010, 22, 1993–2027.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Global Frontier Center for Advanced Soft Electronics (No. 2011-0031640), the Creative Research Program of the ETRI (No. 15ZE1110), Wearable Platform Materials Technology Center (WMC) funded by the National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) (No. 2016R1A5A1009926), and Samsung Research Funding Center of Samsung Electronics (No. SRFC-MA1402-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yool Choi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B.C., Yang, S.Y., Seong, H. et al. Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics. Nano Res. 10, 2459–2470 (2017). https://doi.org/10.1007/s12274-017-1449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1449-y

Keywords

Navigation