Skip to main content
Log in

Valley polarization in stacked MoS2 induced by circularly polarized light

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manipulation of valley pseudospins is crucial for future valleytronics. The emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin–valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin–valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom—stacking pseudospin—and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and an additional unpolarized peak at lower energy. Our findings provide a more complete understanding of valley quantum control for future valleytronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Žutic, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  2. Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.

    Article  Google Scholar 

  3. Xiao, J.; Ye, Z. L.; Wang, Y.; Zhu, H. Y.; Wang, Y.; Zhang, X. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light: Sci. Appl. 2015, 4, e366.

    Article  Google Scholar 

  4. Rycerz, A.; Tworzydlo, J.; Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.

    Article  Google Scholar 

  5. Isberg, J.; Gabrysch, M.; Hammersberg, J.; Majdi, S.; Kovi, K. K.; Twitchen, D. J. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater. 2013, 12, 760–764.

    Article  Google Scholar 

  6. Takashina, K.; Ono, Y.; Fujiwara, A.; Takahashi, Y.; Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 2006, 96, 236801.

    Article  Google Scholar 

  7. Shkolnikov, Y. P.; De Poortere, E. P.; Tutuc, E.; Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 2002, 89, 226805.

    Article  Google Scholar 

  8. Zhu, Z. W.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2012, 8, 89–94.

    Article  Google Scholar 

  9. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  Google Scholar 

  10. Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Article  Google Scholar 

  11. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  Google Scholar 

  12. Sie, E. J.; McIver, J. W.; Lee, Y.-H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294.

    Article  Google Scholar 

  13. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  Google Scholar 

  14. Xiao, D.; Liu, G.-B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  Google Scholar 

  15. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  16. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  17. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  18. Gong, Z. R.; Liu, G.-B.; Yu, H. Y.; Xiao, D.; Cui, X. D.; Xu, X. D.; Yao, W. Magnetoelectric effects and valleycontrolled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 2013, 4, 2053.

    Article  Google Scholar 

  19. Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spinlayer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

    Article  Google Scholar 

  20. Zhu, B. R.; Zeng, H. L.; Dai, J. F.; Gong, Z. R.; Cui, X. D. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606–11611.

    Article  Google Scholar 

  21. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  Google Scholar 

  22. Wu, S. F.; Ross, J. S.; Liu, G.-B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

    Article  Google Scholar 

  23. Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406.

    Article  Google Scholar 

  24. Liu, Q. H.; Zhang, X. W.; Zunger, A. Intrinsic circular polarization in centrosymmetric stacks of transition-metal dichalcogenide compounds. Phys. Rev. Lett. 2015, 114, 087402.

    Article  Google Scholar 

  25. Zhang, X. W.; Liu, Q. H.; Luo, J.-W.; Freeman, A. J.; Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 2014, 10, 387–393.

    Article  Google Scholar 

  26. Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R.-L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

    Article  Google Scholar 

  27. Li, X.; Zhang, F.; Niu, Q. Unconventional quantum hall effect and tunable spin hall effect in dirac materials: Application to an isolated MoS2 trilayer. Phys. Rev. Lett. 2013, 110, 066803.

    Article  Google Scholar 

  28. MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

    Article  Google Scholar 

  29. Scrace, T.; Tsai, Y.; Barman, B.; Schweidenback, L.; Petrou, A.; Kioseoglou, G.; Ozfidan, I.; Korkusinski, M.; Hawrylak, P. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 2015, 10, 603–607.

    Article  Google Scholar 

  30. Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611–617.

    Article  Google Scholar 

  31. Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y.-R.; Liu, W.-T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

    Article  Google Scholar 

  32. Akashi, R.; Ochi, M.; Bordács, S.; Suzuki, R.; Tokura, Y.; Iwasa, Y.; Arita, R. Two-dimensional valley electrons and excitons in noncentrosymmetric 3R-MoS2. Phys. Rev. Appl. 2015, 4, 014002.

    Article  Google Scholar 

  33. Lui, C. H.; Ye, Z. P.; Keiser, C.; Barros, E. B.; He, R. Stacking-dependent shear modes in trilayer graphene. Appl. Phys. Lett. 2015, 106, 041904.

    Article  Google Scholar 

  34. Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294–300.

    Article  Google Scholar 

  35. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

    Article  Google Scholar 

  36. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  37. Hamann, D. R. Generalized norm-conserving pseudopotentials. Phys. Rev. B 1989, 40, 2980–2987.

    Article  Google Scholar 

  38. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

  39. Lazzeri, M.; Mauri, F. First-principles calculation of vibrational Raman spectra in large systems: Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 2003, 90, 036401.

    Article  Google Scholar 

  40. Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.

    Article  Google Scholar 

  41. Mostofi, A. A.; Yates, J. R.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by MOE under AcRF Tier 2 (No. MOE2012-T2-2-124) and AcRF Tier 3 (No. MOE2011-T3-1-005) in Singapore. X. L. W. and B. K. T. would like to acknowledge the funding support from NTU-A*STAR Silicon Technologies Centre of Excellence under the program grant No. 112 3510 0003. L. Z. would like to acknowledge the funding support from the Singapore National Research Foundation under NRF RF Award No. NRF-RF2013-08. J. X. Y. and J. X. acknowledge the technical support from H. L. H. at WITec. We thank Dr. Jer-Lai Kuo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxu Yan or Zexiang Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Wang, X., Tay, B.K. et al. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 10, 1618–1626 (2017). https://doi.org/10.1007/s12274-016-1329-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1329-x

Keywords

Navigation