Skip to main content
Log in

Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spinel phase LiMn2O4 was successfully embedded into monoclinic phase layeredstructured Li2MnO3 nanorods, and these spinel-layered integrate structured nanorods showed both high capacities and superior high-rate capabilities as cathode material for lithium-ion batteries (LIBs). Pristine Li2MnO3 nanorods were synthesized by a simple rheological phase method using α-MnO2 nanowires as precursors. The spinel-layered integrate structured nanorods were fabricated by a facile partial reduction reaction using stearic acid as the reductant. Both structural characterizations and electrochemical properties of the integrate structured nanorods verified that LiMn2O4 nanodomains were embedded inside the pristine Li2MnO3 nanorods. When used as cathode materials for LIBs, the spinel-layered integrate structured Li2MnO3 nanorods (SL-Li2MnO3) showed much better performances than the pristine layered-structured Li2MnO3 nanorods (L-Li2MnO3). When charge–discharged at 20 mA·g−1 in a voltage window of 2.0–4.8 V, the SL-Li2MnO3 showed discharge capacities of 272.3 and 228.4 mAh·g−1 in the first and the 60th cycles, respectively, with capacity retention of 83.8%. The SL-Li2MnO3 also showed superior high-rate performances. When cycled at rates of 1 C, 2 C, 5 C, and 10 C (1 C = 200 mA·g−1) for hundreds of cycles, the discharge capacities of the SL-Li2MnO3 reached 218.9, 200.5, 147.1, and 123.9 mAh·g−1, respectively. The superior performances of the SL-Li2MnO3 are ascribed to the spinel-layered integrated structures. With large capacities and superior high-rate performances, these spinel-layered integrate structured materials are good candidates for cathodes of next-generation high-power LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

    Article  Google Scholar 

  2. Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Article  Google Scholar 

  3. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P. L.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  Google Scholar 

  4. Yu, H. J.; Zhou, H. S. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 2013, 4, 1268–1280.

    Article  Google Scholar 

  5. Ye, D. L.; Wang, L. Z. Li2MnO3 based Li-rich cathode materials: Towards a better tomorrow of high energy lithium ion batteries. Mater. Technol. 2014, 29, A59–A69.

    Article  Google Scholar 

  6. Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x) LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 2004, 6, 1085–1091.

    Article  Google Scholar 

  7. Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Hackney, S. A. Comments on the structural complexity of lithium-rich Li1+x M1-x O2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 2006, 8, 1531–1538.

    Article  Google Scholar 

  8. Jarvis, K. A.; Deng, Z. Q.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 2011, 23, 3614–3621.

    Article  Google Scholar 

  9. Robertson, A. D.; Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 2003, 15, 1984–1992.

    Article  Google Scholar 

  10. Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.

    Article  Google Scholar 

  11. Yan, P. F.; Xiao, L.; Zheng, J. M.; Zhou, Y. G.; He, Y.; Zu, X. T.; Mao, S. X.; Xiao, J.; Gao, F.; Zhang, J. G. et al. Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem. Mater. 2015, 27, 975–982.

    Article  Google Scholar 

  12. Yu, C.; Wang, H.; Guan, X. F.; Zheng, J.; Li, L. P. Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J. Alloys Compd. 2013, 546, 239–245.

    Article  Google Scholar 

  13. Lim, J.; Moon, J.; Gim, J.; Kim, S.; Kim, K.; Song, J. J.; Kang, J.; Im, W. B.; Kim, J. Fully activated Li2MnO3 nanoparticles by oxidation reaction. J. Mater. Chem. 2012, 22, 11772–11777.

    Article  Google Scholar 

  14. Kubota, K.; Kaneko, T.; Hirayama, M.; Yonemura, M.; Imanari, Y.; Nakane, K.; Kanno, R. Direct synthesis of oxygen-deficient Li2MnO3-x for high capacity lithium battery electrodes. J. Power Sources 2012, 216, 249–255.

    Article  Google Scholar 

  15. Xiao, L.; Xiao, J.; Yu, X. Q.; Yan, P. F.; Zheng, J. M.; Engelhard, M.; Bhattacharya, P.; Wang, C. M.; Yang, X.-Q.; Zhang, J. G. Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 2015, 16, 143–151.

    Article  Google Scholar 

  16. Dong, X.; Xu, Y. L.; Xiong, L. L.; Sun, X. F.; Zhang, Z. W. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J. Power Sources 2013, 243, 78–87.

    Article  Google Scholar 

  17. Dong, X.; Xu, Y. L.; Yan, S.; Mao, S. C.; Xiong, L. L.; Sun, X. F. Towards low-cost, high energy density Li2MnO3 cathode materials. J. Mater. Chem. A 2015, 3, 670–679.

    Article  Google Scholar 

  18. Gao, Y. R.; Wang, X. F.; Ma, J.; Wang, Z. X.; Chen, L. Q. Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem. Mater. 2015, 27, 3456–3461.

    Article  Google Scholar 

  19. Ma, J.; Zhou, Y. N.; Gao, Y. R.; Kong, Q. Y.; Wang, Z. X.; Yang, X. Q.; Chen, L. Q. Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Chem.—Eur. J. 2014, 20, 8723–8730.

    Article  Google Scholar 

  20. Lee, E. S.; Huq, A.; Chang, H. Y.; Manthiram, A. Highvoltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem. Mater. 2012, 24, 600–612.

    Article  Google Scholar 

  21. Kim, D.; Sandi, G.; Croy, J. R.; Gallagher, K. G.; Kang, S. H.; Lee, E.; Slater, M. D.; Johnson, C. S.; Thackeray, M. M. Composite ‘layered-layered-spinel’ cathode structures for lithium-ion batteries. J. Electrochem. Soc. 2013, 160, A31–A38.

    Article  Google Scholar 

  22. Feng, X.; Yang, Z. Z.; Tang, D. C.; Kong, Q. Y.; Gu, L.; Wang, Z. X.; Chen, L. Q. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys. Chem. Chem. Phys. 2015, 17, 1257–1264.

    Article  Google Scholar 

  23. Zhao, J. Q.; Ellis, S.; Xie, Z. Q.; Wang, Y. Synthesis of integrated layered-spinel composite cathode materials for highvoltage lithium-ion batteries up to 5.0 V. ChemElectroChem 2015, 2, 1821–1829.

    Article  Google Scholar 

  24. Wang, M.; Xue, Y. H.; Zhang, K. L.; Zhang, Y. X. Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4. Electrochim. Acta 2011, 56, 4294–4298.

    Article  Google Scholar 

  25. Ranjusha, R.; Nair, A. S.; Ramakrishna, S.; Anjali, P.; Sujith, K.; Subramanian, K. R. V.; Sivakumar, N.; Kim, T. N.; Nair, S. V.; Balakrishnan, A. Ultra-fine MnO2 nanowire based high performance thin film rechargeable electrodes: Effect of surface morphology, electrolytes and concentrations. J. Mater. Chem. 2012, 22, 20465–20471.

    Article  Google Scholar 

  26. Li, Q. G.; Olson, J. B.; Penner, R. M. Nanocrystalline a-MnO2 nanowires by electrochemical step-edge decoration. Chem. Mater. 2004, 16, 3402–3405.

    Article  Google Scholar 

  27. Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3–x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791.

    Article  Google Scholar 

  28. Lu, J.; Chang, Y. L.; Song, B. H.; Xia, H.; Yang, J. R.; Lee, K. S.; Lu, L. High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. J. Power Sources 2014, 271, 604–613.

    Article  Google Scholar 

  29. Julien, C. M.; Massot, M. Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater. Sci. Eng. B 2003, 100, 69–78.

    Article  Google Scholar 

  30. Julien, C. M.; Massot, M. Raman spectroscopic studies of lithium manganates with spinel structure. J. Phys.: Condens. Matter 2003, 15, 3151.

    Google Scholar 

  31. Ramana, C. V.; Massot, M.; Julien, C. M. XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf. Interface Anal. 2005, 37, 412–416.

    Article  Google Scholar 

  32. Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.

    Article  Google Scholar 

  33. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.

    Article  Google Scholar 

  34. Ohzuku, T.; Kitagawa, M.; Hirai, T. Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J. Electrochem. Soc. 1990, 137, 769–775.

    Google Scholar 

  35. Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.

    Article  Google Scholar 

  36. Johnson, C. S.; Li, N.; Vaughey, J. T.; Hackney, S. A.; Thackeray, M. M. Lithium–manganese oxide electrodes with layered-spinel composite structures xLi2MnOI3·(1-x)Li1+y Mn2-y O4 (0-x-1, 0=y=0.33) for lithium batteries. Electrochem. Commun. 2005, 7, 528–536.

    Article  Google Scholar 

  37. Park, S. H.; Kang, S. H.; Johnson, C. S.; Amine, K.; Thackeray, M. M. Lithium-manganese–nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries. Electrochem. Commun. 2007, 9, 262–268.

    Article  Google Scholar 

  38. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

    Article  Google Scholar 

  39. Li, Z.; Du, F.; Bie, X. F.; Zhang, D.; Cai, Y. M.; Cui, X. R.; Wang, C. Z.; Chen, G.; Wei, Y. J. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J. Phys. Chem. C 2010, 114, 22751–22757.

    Article  Google Scholar 

  40. Yu, H. J.; Wang, Y. R.; Asakura, D.; Hosono, E.; Zhang, T.; Zhou, H. S. Electrochemical kinetics of the 0.5Li2MnO3· 0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries. RSC Adv. 2012, 2, 8797–8807.

    Article  Google Scholar 

  41. Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

    Article  Google Scholar 

  42. Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G. An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. J. Phys. Chem. C 2010, 114, 8614–8621.

    Article  Google Scholar 

  43. Kunduraci, M.; Al-Sharab, J. F.; Amatucci, G. G. Highpower nanostructured LiMn2–x NixO4 high-voltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology. Chem. Mater. 2006, 18, 3585–3592.

    Article  Google Scholar 

  44. Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3 _ m). Nano Res. 2013, 6, 679–687.

    Article  Google Scholar 

  45. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Center for Electron Microscopy at Wuhan University for help in taking the TEM and high-resolution TEM images for the materials. This study was supported by the National Natural Science Foundation of China (No. 21271145), the National Science Foundation of Hubei Province (No. 2015CFB537) and the Funds for Creative Research Groups of Hubei Province (No. 2014CFA007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxiang Zhang.

Electronic supplementary material

12274_2016_1314_MOESM1_ESM.pdf

Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Cong, H., Sun, Y. et al. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries. Nano Res. 10, 556–569 (2017). https://doi.org/10.1007/s12274-016-1314-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1314-4

Keywords

Navigation