Skip to main content
Log in

A method for modeling and deciphering the persistent photoconductance and long-term charge storage of ZnO nanorod arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The controllability of persistent photoconductance (PPC) and charge/energy storage of ZnO nanorod arrays (NRAs) were demonstrated experimentally by tuning the nanorod diameter. The dependency of the ZnO NRAs’ photoelectric characteristics on the nanorod diameter suggests that the Debye length and photon penetration depth in ZnO could spatially partition a standalone nanorod into three different photoelectric functional regions (PFRs). Theoretically, a series of rate functions was employed to describe the different extrinsic/intrinsic carrier photogeneration/recombination dynamic sub-processes occurring in the different PFRs, associated with oxygen chemisorption/photodesorption, oxygen vacancy photoionization, and electron trapping by photoionized oxygen vacancies. On the basis of the coupled contributions of these different dynamic sub-processes in the photoelectric properties of the ZnO NRAs, a thorough-process photoelectric dynamic model (TPDM) was proposed using the simultaneous rate functions. Through solving the rate functions, the corresponding analytical equations could be employed to simulate the time-resolved PPC spectra of the ZnO NRAs, and then the quantitative parameters extracted to decipher the PPC and charge/energy storage mechanisms in the ZnO NRAs. In this way, the TPDM model provided a numerical-analytical method to quantitatively evaluate the photoelectric properties of ZnO NRA-based devices. Additionally, the TPDM model revealed how the different photoinduced carrier dynamics in the different PFRs could play functional roles in different optoelectronic applications, e.g., photodetectors, photocatalysts, solar cells and optical nonvolatile memories, and thus it illuminated a practical approach for the design of ZnO NRA-based devices via optimization of the modularized spatial configuration of the PFRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer, B. F.; Graham, D. M.; Hardman, S. J. O.; Seddon, E. A.; Cliffe, M. J.; Syres, K. L.; Thomas, A. G.; Stubbs, S. K.; Sirotti, F.; Silly, M. G. et al. Time-resolved surface photovoltage measurements at n-type photovoltaic surfaces: Si(111) and ZnO(101_0). Phys. Rev. B 2013, 88, 19530.

    Article  Google Scholar 

  2. Tebano, A.; Fabbri, E.; Pergolesi, D.; Balestrino, G.; Traversa, E. Room-temperature giant persistent photoconductivity in SrTiO3/LaAlO3 heterostructures. ACS Nano 2012, 6, 1278–1283.

    Article  Google Scholar 

  3. Feng, P.; Mönch, I.; Harazim, S.; Huang, G. S.; Mei, Y. F.; Schmidt, O. G. Giant persistent photoconductivity in rough silicon nanomembranes. Nano Lett. 2009, 9, 3453–3459.

    Article  Google Scholar 

  4. Lu, M. P.; Lu, M. Y.; Chen, L. J. Multibit programmable optoelectronic nanowire memory with sub-femtojoule optical writing energy. Adv. Funct. Mater. 2014, 24, 2967–2974.

    Article  Google Scholar 

  5. Bhatnagar, A.; Kim, Y. H.; Hesse, D.; Alexe, M. Persistent photoconductivity in strained epitaxial BiFeO3 thin films. Nano Lett. 2014, 14, 5224–5228.

    Article  Google Scholar 

  6. Chen, Y. Y.; Hsin, P. Y.; Leendertz, C.; Korte, L.; Rech, B.; Du, C. H.; Gan, J. Y. Field-effect passivation and degradation analyzed with photoconductance decay measurements. Appl. Phys. Lett. 2014, 104, 193504.

    Article  Google Scholar 

  7. Cuevas, A.; Sinton, R. A. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Prog. Photovoltaics 1997, 5, 79–90.

    Article  Google Scholar 

  8. Friedrich, D.; Kunst, M. Analysis of charge carrier kinetics in nanoporous systems by time resolved photoconductance measurements. J. Phys. Chem. C 2011, 115, 16657–16663.

    Article  Google Scholar 

  9. Seshan, V.; Murthy, D. H. K.; Castellanos-Gomez, A.; Sachdeva, S.; Ahmad, H. A.; Janssens, S. D.; Janssen, W.; Haenen, K.; van der Zant, H. S. J.; Sudhölter, E. J. R. et al. Contactless photoconductance study on undoped and doped nanocrystalline diamond films. ACS Appl. Mater. Interfaces 2014, 6, 11368–11375.

    Article  Google Scholar 

  10. Bueno, G.; Recart, F.; Jimeno, J. C. A simulation-based method for the comprehensive analysis of effective lifetime from photoconductance. Prog. Photovoltaics 2007, 15, 123–142.

    Article  Google Scholar 

  11. Kamieniecki, E. Defect specific photoconductance: Carrier recombination through surface and other extended crystal imperfections. J. Appl. Phys. 2012, 112, 063715.

    Article  Google Scholar 

  12. Bera, A.; Peng, H. Y.; Lourembam, J.; Shen, Y. D.; Sun, X. W.; Wu, T. A versatile light-switchable nanorod memory: Wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 2013, 23, 4977–4984.

    Article  Google Scholar 

  13. Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mat. 2001, 13, 2838–2842.

    Article  Google Scholar 

  14. Zhao, D.; Chen, C. C.; Yu, C. L.; Ma, W. H.; Zhao, J. C. Photoinduced electron storage in WO3/TiO2 nanohybrid material in the presence of oxygen and postirradiated reduction of heavy metal ions. J. Phys. Chem. C 2009, 113, 13160–13165.

    Article  Google Scholar 

  15. Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale 2013, 5, 6867–6873.

    Article  Google Scholar 

  16. Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res. 2015, 8, 382–405.

    Article  Google Scholar 

  17. Zhu, Q.; Xie, C. S.; Li, H. Y.; Yang, Q. C. Comparative study of ZnO nanorod array and nanoparticle film in photoelectric response and charge storage. J. Alloy. Compd. 2014, 585, 267–276.

    Article  Google Scholar 

  18. Zhu, Q.; Xie, C. S.; Li, H. Y.; Yang, C. Q.; Zhang, S. P.; Zeng, D. W. Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C 2014, 2, 4566–4580.

    Article  Google Scholar 

  19. Chen, C. Y.; Retamal, J. R. D.; Wu, I. W.; Lien, D. H.; Chen, M. W.; Ding, Y.; Chueh, Y. L.; Wu, C.-I., He, J.-H. Probing surface band bending of surface-engineered metal oxide nanowires. ACS Nano 2012, 6, 9366–9372.

    Article  Google Scholar 

  20. Hsu, N. E.; Hung, W. K.; Chen, Y. F. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J. Appl. Phys. 2004, 96, 4671–4673.

    Article  Google Scholar 

  21. Malkova, N.; Ning, C. Z. Surface states of wurtzite semiconductor nanowires with identical lateral facets: A transfer-matrix approach. Phys. Rev. B 2006, 74, 155308.

    Article  Google Scholar 

  22. Yang, L. L.; Zhao, Q. X.; Willander, M.; Liu, X. J.; Fahlman, M.; Yang, J. H.; Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2010, 256, 3592–3597.

    Article  Google Scholar 

  23. Soudi, A.; Hsu, C. H.; Gu, Y. Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires. Nano Lett. 2012, 12, 5111–5116.

    Article  Google Scholar 

  24. Spencer, B. F.; Cliffe, M. J.; Graham, D. M.; Hardman, S. J. O.; Seddon, E. A.; Syres, K. L.; Thomas, A. G.; Sirotti, F.; Silly, M. G.; Akhtar, J. et al. Dynamics in next-generation solar cells: Time-resolved surface photovoltage measurements of quantum dots chemically linked to ZnO (101_0). Faraday Discuss. 2014, 171, 275–298.

    Article  Google Scholar 

  25. Zhu, Q.; Xie, C. S.; Li, H. Y.; Zhang, J.; Zeng, D. W. Through-process analytical modeling of photoconductance spectrum for porous ZnO nanocrystalline film. Chem. Mat. 2015, 27, 2861–2874.

    Article  Google Scholar 

  26. Bao, J. M.; Shalish, I.; Su, Z. H.; Gurwitz, R.; Capasso, F.; Wang, X. W.; Ren, Z. F. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. 2011, 61, 404.

    Article  Google Scholar 

  27. Lagowski, J.; Sproles, E. S., Jr.; Gatos, H. C. Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO. J. Appl. Phys. 1977, 48, 3566–3575.

    Article  Google Scholar 

  28. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  29. Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

    Article  Google Scholar 

  30. Li, Q. H.; Gao, T.; Wang, Y. G.; Wang, T. H. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005, 86, 123117.

    Article  Google Scholar 

  31. Mitra, P.; Chatterjee, A. P.; Maiti, H. S. ZnO thin film sensor. Mater. Lett. 1998, 35, 33–38.

    Article  Google Scholar 

  32. Lany, S.; Zunger, A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Phys. Rev. B 2005, 72, 035215.

    Article  Google Scholar 

  33. Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H. J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917–928.

    Article  Google Scholar 

  34. Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  Google Scholar 

  35. Zhang, T. P.; Liang, R. R.; Dong, L.; Wang, J.; Xu, J.; Pan, C. F. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–xGex alloy heterojunction. Nano Res. 2015, 8, 2676–2685.

    Article  Google Scholar 

  36. Zhu, Q.; Xie, C. S.; Li, H. Y.; Yang, C. Q.; Zeng, D. W. A novel planar integration of all-solid-state capacitor and photodetector by an ultra-thin transparent sulfated TiO2 film. Nano Energy 2014, 9, 252–263.

    Article  Google Scholar 

  37. Zhao, Q. X.; Yang, L. L.; Willander, M.; Sernelius, B. E.; Holtz, P. O. Surface recombination in ZnO nanorods grown by chemical bath deposition. J. Appl. Phys. 2008, 104, 073526.

    Article  Google Scholar 

  38. Abelenda, A.; Sánchez, M.; Ribeiro, G. M.; Fernandes, P. A.; Salomé, P. M. P.; da Cunha, A. F.; Leitão, J. P.; da Silva, M. I. N.; González, J. C. Anomalous persistent photoconductivity in Cu2ZnSnS4 thin films and solar cells. Sol. Energy Mater. Sol. Cells 2015, 137, 164–168.

    Article  Google Scholar 

  39. González, J. C.; Ribeiro, G. M.; Viana, E. R.; Fernandes, P. A.; Salomé, P. M. P.; Gutiérrez, K.; Abelenda, A.; Matinaga, F. M.; Leitão, J. P.; da Cunha, A. F. Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D-Appl. Phys. 2013, 46, 155107.

    Article  Google Scholar 

  40. Tian, Y.; Guo, C. F.; Zhang, J. M.; Liu, Q. Operable persistent photoconductivity of Bi2S3 nested nano-networks. Phys. Chem. Chem. Phys. 2015, 17, 851–857.

    Article  Google Scholar 

  41. Golego, N.; Studenikin, S. A.; Cocivera, M. Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas. J. Electrochem. Soc. 2000, 147, 1592–1594.

    Article  Google Scholar 

  42. Nelson, J.; Eppler, A. M.; Ballard, I. M. Photoconductivity and charge trapping in porous nanocrystalline titanium dioxide. J. Photochem. Photobiol. A-Chem. 2002, 148, 25–31.

    Article  Google Scholar 

  43. Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.

    Article  Google Scholar 

  44. Yadian, B.; Chen, R.; Liu, H.; Sun, H. D.; Liu, Q.; Gan, C. L.; Kun, Z.; Zhao, C. W.; Zhu, B.; Huang, Y. Z. Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation. Nano Res. 2015, 8, 1857–1864.

    Article  Google Scholar 

  45. Xiong, G.; Pal, U.; Serrano, J. G. Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J. Appl. Phys. 2007, 101, 024317.

    Article  Google Scholar 

  46. Yukawa, R.; Yamamoto, S.; Ozawa, K.; Emori, M.; Ogawa, M.; Yamamoto, S.; Fujikawa, K.; Hobara, R.; Kitagawa, S.; Daimon, H. et al. Electron–hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2014, 105, 151602.

    Article  Google Scholar 

  47. Zhang, Z.; Yates, J. T., Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

    Article  Google Scholar 

  48. Li, M. J.; Xing, G. C.; Xing, G. Z.; Wu, B.; Wu, T.; Zhang, X. H.; Sum, T. C. Origin of green emission and charge trapping dynamics in ZnO nanowires. Phys. Rev. B 2013, 87, 115309.

    Article  Google Scholar 

  49. Vidya, R.; Ravindran, P.; Fjellvåg, H.; Svensson, B. G.; Monakhov, E.; Ganchenkova, M.; Nieminen, R. M. Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Phys. Rev. B 2011, 83, 045206.

    Article  Google Scholar 

  50. Kovácik, R.; Meyer, B.; Marx, D. F centers versus dimer vacancies on ZnO surfaces: Characterization by STM and STS calculations. Angew. Chem., Int. Ed. 2007, 46, 4894–4897.

    Article  Google Scholar 

  51. Lin, B. X.; Fu, Z. X.; Jia, Y. B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943–945.

    Article  Google Scholar 

  52. Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurisic, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L. et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871.

    Article  Google Scholar 

  53. Usui, H. Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution. J. Phys. Chem. C 2007, 111, 9060–9065.

    Article  Google Scholar 

  54. Fu, Z. X.; Guo, C. X.; Lin, B. X.; Liao, G. H. Cathodoluminescence of ZnO films. Chin. Phys. Lett. 1998, 15, 457–459.

    Article  Google Scholar 

  55. Wang, X. D.; Song, J. H.; Summers, C. J.; Ryou, J. H.; Li, P.; Dupuis, R. D.; Wang, Z. L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B. 2006, 110, 7720–7724.

    Article  Google Scholar 

  56. Guo, D. L.; Tan, L. H.; Wei, Z. P.; Chen, H. Y.; Wu, T. Density-controlled synthesis of uniform ZnO nanowires: Wide-range tunability and growth regime transition. Small 2013, 9, 2069–2075.

    Article  Google Scholar 

  57. Jin, C. M.; Tiwari, A.; Narayan, R. J. Ultraviolet-illuminationenhanced photoluminescence effect in zinc oxide thin films. J. Appl. Phys. 2005, 98, 083707.

    Article  Google Scholar 

  58. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  59. Luo, L.; Zhang, Y. F.; Mao, S. S.; Lin, L. W. Fabrication and characterization of ZnO nanowires based UV photodiodes. Sens. Actuator. A-Phys. 2006, 127, 201–206.

    Article  Google Scholar 

  60. Yang, C. Q.; Zhu, Q.; Lei, T.; Li, H. Y.; Xie, C. S. The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J. Mater. Chem. C 2014, 2, 9467–9477.

    Article  Google Scholar 

  61. Li, J.; Liu, Y.; Zhu, Z. J.; Zhang, G. Z.; Zou, T.; Zou, Z. J.; Zhang, S. P.; Zeng, D. W.; Xie, C. S. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci. Rep. 2013, 3, 2409.

    Google Scholar 

  62. Kang, Z.; Yan, X. Q.; Zhao, L. Q.; Liao, Q. L.; Zhao, K.; Du, H. W.; Zhang, X. H.; Zhang, X. J.; Zhang, Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015, 8, 2004–2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Xie.

Electronic supplementary material

12274_2016_1182_MOESM1_ESM.pdf

A method for modeling and deciphering the persistent photoconductance and long-term charge storage of ZnO nanorod arrays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Xie, C., Li, H. et al. A method for modeling and deciphering the persistent photoconductance and long-term charge storage of ZnO nanorod arrays. Nano Res. 9, 2972–3002 (2016). https://doi.org/10.1007/s12274-016-1182-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1182-y

Keywords

Navigation