Skip to main content
Log in

Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Short in vivo circulation is a major hindrance to the widespread adoption of protein therapeutics. Protein nanocapsules generated by encapsulating proteins with a thin layer of phosphorylcholine-based polymer via a two-step encapsulation process exhibited significantly prolonged plasma half-life. Furthermore, by constructing nanocapsules with similar sizes but different surface charges and chemistry, we demonstrated a generic strategy for prolonging the plasma half-life of therapeutic proteins. In an in vitro experiment, four types of bovine serum albumin (BSA) nanocapsules were incubated with fetal bovine serum (FBS) in phosphate buffer saline (PBS); the cell uptake by HeLa cells was monitored to systematically evaluate the characteristics of the surface chemistry during circulation. Single positron emission tomography–computed tomography (SPECT) was employed to allow real-time observation of the BSA nanoparticle distribution in vivo, as well as quantification of the plasma concentration after intravenous administration. This study offers a practical method for translating a broad range of proteins for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

    Article  Google Scholar 

  2. Arora, R.; Sawney, S; Saluja, D. Potential therapeutic approaches for the treatment of acute myeloid leukemia with AML1-ETO translocation. Curr. Cancer Drug Targets 2016, 16, 215–225.

    Article  Google Scholar 

  3. Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov. 2006, 5, 507–521.

    Article  Google Scholar 

  4. Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A. K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv. 2015, 12, 415–440.

    Article  Google Scholar 

  5. Baker, M.; Reynolds, H. M.; Lumicisi, B.; Bryson, C. J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself 2010, 1, 314–322.

    Article  Google Scholar 

  6. Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575.

    Article  Google Scholar 

  7. Morachis, J. M.; Mahmoud, E. A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev. 2012, 64, 505–519.

    Article  Google Scholar 

  8. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  Google Scholar 

  9. Jones, S. W.; Roberts, R. A.; Robbins, G. R.; Perry, J. L.; Kai, M. P.; Chen, K.; Bo, T.; Napier, M. E. Ting, J. P. Y.; DeSimone, J. M. et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J. Clin. Invest. 2013, 123, 3061–3073.

    Article  Google Scholar 

  10. Ishihara, T.; Takeda, M.; Sakamoto, H.; Kimoto, A.; Kobayashi, C.; Takasaki, N.; Yuki, K.; Tanaka, K. I.; Takenaga, M.; Igarashi, R. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res. 2009, 26, 2270–2279.

    Article  Google Scholar 

  11. Armstrong, J. K.; Hempel, G.; Koling, S.; Chan, L. S.; Fisher, T.; Meiselman, H. J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110, 103–111.

    Article  Google Scholar 

  12. Robinson, K. J.; Coffey, J. W.; Muller, D. A.; Young, P. R.; Kendall, M. A. F.; Thurech, K. J.; Grøndahl, L.; Corrie, S. R. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Biointerphases 2015, 10, 04A305.

    Article  Google Scholar 

  13. Geagea, R.; Aubert, P. H.; Banet, P.; Sanson, N. Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers. Chem. Commun. 2015, 51, 402–405.

    Article  Google Scholar 

  14. Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556.

    Article  Google Scholar 

  15. Champion, J. A.; Katare, Y. K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control Release 2007, 121, 3–9.

    Article  Google Scholar 

  16. Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Release 2013, 172, 782–794.

    Article  Google Scholar 

  17. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  18. Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546.

    Article  Google Scholar 

  19. Yan, M.; Du, J. J.; Gu, Z; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

    Article  Google Scholar 

  20. Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

    Article  Google Scholar 

  21. Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323–330.

    Article  Google Scholar 

  22. Yohannes, G.; Wiedmer, S. K.; Elomaa, M.; Jussila, M.; Aseyev, V.; Riekkola, M. L. Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation. Anal. Chim. Acta 2010, 675, 191–198.

    Article  Google Scholar 

  23. Li, C. Y.; Zhang, D. R.; Guo, Y. Y.; Guo, H. J.; Li, T. T.; Hao, L. L.; Zheng, D. D.; Liu, G. P.; Zhang, Q. Galactosylated bovine serum albumin nanoparticles for parenteral delivery of oridonin: Tissue distribution and pharmacokinetic studies. J. Microencapsul. 2014, 31, 573–578.

    Article  Google Scholar 

  24. Dancey, J. E.; Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 649–659.

    Article  Google Scholar 

  25. Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 1988, 57, 321–347.

    Article  Google Scholar 

  26. Talaei, F.; Azhdarzadeh, M.; Hashemi, N. H.; Moosavi, M.; Foroumadi, A.; Dinarvand, R.; Atyabi, F. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation. Daru 2011, 19, 257–265.

    Google Scholar 

  27. Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U. et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416.

    Article  Google Scholar 

  28. Ito, K.; Hamamichi, S.; Asano, M.; Hori, Y.; Matsui, J.; Iwata, M.; Funahashi, Y.; Umeda, I. O.; Fujii, H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci. 2016, 107, 60–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyuan Zhu, Yunfeng Lu or Hui Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, Y., Liu, G. et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 9, 2424–2432 (2016). https://doi.org/10.1007/s12274-016-1128-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1128-4

Keywords

Navigation