Skip to main content
Log in

Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocomposites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A universal platform with Mn doping and hyaluronic acid (HA) modification, based on mesoporous silica (mSiO2), was designed and used as a basic multifunctional material with magnetic resonance (MR) imaging. Furthermore, we added flexible functions through the addition of functional molecules. Specially, two typical compounds, hydrophobic perfluorooctyl bromide (PFOB) and hydrophilic doxorubicin (DOX), were loaded into the channels to obtain PFOB@Mn@mSiO2@HA (PMMH) or DOX@Mn@mSiO2@HA (DMMH) nanoparticles for dual-mode imaging or imaging and therapy, respectively. The PMMH and DMMH nanoparticles were highly targeted to the lymph system in vitro and in vivo. MR and ultrasound imaging of PMMH nanoparticles were performed in the lymph system, while MR imaging and chemotherapy of DMMH nanoparticles was used to detect cancer. These results showed that both PMMH and DMMH nanoparticles can be designed with high lymph targeting efficiency. PMMH nanoparticles are a dual-mode contrast agent for both ultrasound and MR imaging for the lymph system and DMMH nanoparticles are powerful agents for the combined diagnosis and therapy of cancer in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

    Article  Google Scholar 

  2. Hu, S. H.; Gao, X. H. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 2010, 132, 7234–7237.

    Article  Google Scholar 

  3. Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F.; Xing, H. Y. et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J. Am. Chem. Soc. 2013, 135, 6494–6503.

    Article  Google Scholar 

  4. Passuello, T.; Pedroni, M.; Piccinelli, F.; Polizzi, S.; Marzola, P.; Tambalo, S.; Conti, G.; Benati, D.; Vetrone, F.; Bettinelli, M. et al. PEG-capped, lanthanide doped GdF3 nanoparticles: Luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale 2012, 4, 7682–7689.

    Article  Google Scholar 

  5. Pellegatti, L.; Zhang, J.; Drahos, B.; Villette, S.; Suzenet, F.; Guillaumet, G.; Petoud, S.; Tóth, E. Pyridine-based lanthanide complexes: Towards bimodal agents operating as near infrared luminescent and MRI reporters. Chem. Commun. 2008, 6591–6593.

    Google Scholar 

  6. Nishioka, T.; Shiga, T.; Shirato, H.; Tsukamoto, E.; Tsuchiya, K.; Kato, T.; Ohmori, K.; Yamazaki, A.; Aoyama, H.; Hashimoto, S. et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int. J. Radiat. Oncol. 2002, 53, 1051–1057.

    Article  Google Scholar 

  7. Wen, S. H.; Li, K. G.; Cai, H. D.; Chen, Q.; Shen, M. W.; Huang, Y. P.; Peng, C.; Hou, W. X.; Zhu, M. F.; Zhang, G. X. et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013, 34, 1570–1580.

    Article  Google Scholar 

  8. Kubota, K.; Yokoyama, J.; Yamaguchi, K.; Ono, S.; Qureshy, A.; Itoh, M.; Fukuda, H. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radiochemotherapy: Comparison with MRI/CT. Eur. J. Nucl. Med. Mol. Imag. 2004, 31, 590–595.

    Article  Google Scholar 

  9. Cheng, S. H.; Lee, C. H.; Chen, M. C.; Souris, J. S.; Tseng, F. G.; Yang, C. S.; Mou, C. Y.; Chen, C. T.; Lo, L. W. Trifunctionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J. Mater. Chem. 2010, 20, 6149–6157.

    Article  Google Scholar 

  10. Cho, H. J.; Yoon, H. Y.; Koo, H.; Ko, S. H.; Shim, J. S.; Cho, J. H.; Park, J. H.; Kim, K.; Kwon, I. C.; Kim, D. D. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J. Controlled Release 2012, 162, 111–118.

    Article  Google Scholar 

  11. Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

    Article  Google Scholar 

  12. Zha, Z. B.; Wang, J. R.; Zhang, S. H.; Wang, S. M.; Qu, E. Z.; Zhang, Y. Y.; Dai, Z. F. Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer. Biomaterials 2014, 35, 287–293.

    Article  Google Scholar 

  13. Bhang, S. H.; Won, N.; Lee, T. J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H. S.; Sung, Y. E.; Hahn, S. K. et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. Acs Nano 2009, 3, 1389–1398.

    Article  Google Scholar 

  14. Jaggupilli, A.; Elkord, E. Significance of CD44 and CD24 as cancer stem cell markers: An enduring ambiguity. Clin. Dev. Immunol. 2012, 2012, 708036.

    Article  Google Scholar 

  15. Kim, J. H.; Glant, T. T.; Lesley, J.; Hyman, R.; Mikecz, K. Adhesion of lymphoid cells to CD44-specific substrata: The consequences of attachment depend on the ligand. Exp. Cell Res. 2000, 256, 445–453.

    Article  Google Scholar 

  16. Banerji, S.; Ni, J.; Wang, S. X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D. G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999, 144, 789–801.

    Article  Google Scholar 

  17. Jackson, D. G.; Prevo, R.; Clasper, S.; Banerji, S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 2001, 22, 317–321.

    Article  Google Scholar 

  18. Mizrahy, S.; Raz, S. R.; Hasgaard, M.; Liu, H.; Soffer-Tsur, N.; Cohen, K.; Dvash, R.; Landsman-Milo, D.; Bremer, M. G. E. G.; Moghimi, S. M. et al. Hyaluronan-coated nanoparticles: The influence of the molecular weight on CD44- hyaluronan interactions and on the immune response. J. Controlled Release 2011, 156, 231–238.

    Article  Google Scholar 

  19. Wu, G. Y.; Zhang, H. J.; Zhan, Z. F.; Lu, Q.; Cheng, J. J.; Xu, J. R.; Zhu, J. Hyaluronic acid-gadolinium complex nanospheres as lymphatic system-specific contrast agent for magnetic resonance imaging. Chinese J. Chem. 2015, 33, 1153–1158.

    Article  Google Scholar 

  20. Ma, M.; Xu, H. X.; Chen, H. R.; Jia, X. Q.; Zhang, K.; Wang, Q.; Zheng, S. G.; Wu, R.; Yao, M. H.; Cai, X. J. et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater. 2014, 26, 7378–7385.

    Article  Google Scholar 

  21. Choi, K. Y.; Yoon, H. Y.; Kim, J. H.; Bae, S. M.; Park, R. W.; Kang, Y. M.; Kim, I. S.; Kwon, I. C.; Choi, K.; Jeong, S. Y. et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. Acs Nano 2011, 5, 8591–8599.

    Article  Google Scholar 

  22. Choi, K. Y.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. C.; Choi, K.; Jeong, S. Y. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 2011, 32, 1880–1889.

    Article  Google Scholar 

  23. Park, S. J.; Park, W.; Na, K. Photo-activatable ternary complex based on a multifunctional shielding material for targeted shRNA delivery in cancer treatment. Biomaterials 2013, 34, 8991–8999.

    Article  Google Scholar 

  24. He, Q. J.; Shi, J. L. Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21, 5845–5855.

    Article  Google Scholar 

  25. Sim, L. N.; Majid, S. R.; Arof, A. K. FTIR studies of PEMA/ PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 2012, 58, 57–66.

    Article  Google Scholar 

  26. Sim, L. N.; Majid, S. R.; Arof, A. K. Effects of 1-butyl-3-methyl imidazolium trifluoromethanesulfonate ionic liquid in poly(ethyl methacrylate)/poly(vinylidenefluoride-cohexafluoropropylene) blend based polymer electrolyte system. Electrochim. Acta 2014, 123, 190–197.

    Article  Google Scholar 

  27. Guillet-Nicolas, R.; Laprise-Pelletier, M.; Nair, M. M.; Chevallier, P.; Lagueux, J.; Gossuin, Y.; Laurent, S.; Kleitz, F.; Fortin, M. A. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nanoscale 2013, 5, 11499–11511.

    Article  Google Scholar 

  28. Bejar, A.; Ben Chaabene, S.; Jaber, M.; Lambert, J. F.; Bergaoui, L. Mn-analcime: Synthesis, characterization and application to cyclohexene oxidation. Micropor. Mesopor. Mat. 2014, 196, 158–164.

    Article  Google Scholar 

  29. Liu, Y.; Shen, J. M.; Chen, Z. L.; Liu, Y. Degradation of p-chloronitrobenzene in drinking water by manganese silicate catalyzed ozonation. Desalination 2011, 279, 219–224.

    Article  Google Scholar 

  30. Päll, T.; Pink, A.; Kasak, L.; Turkina, M.; Anderson, W.; Valkna, A.; Kogerman, P. Soluble CD44 interacts with intermediate filament protein vimentin on endothelial cell surface. PLoS One 2011, 6, e29305.

    Article  Google Scholar 

  31. Jones, M.; Tussey, L.; Athanasou, N.; Jackson, D. G. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J. Biol. Chem. 2000, 275, 7964–7974.

    Article  Google Scholar 

  32. Appaturi, J. N.; Adam, F. A facile and efficient synthesis of styrene carbonate via cycloaddition of CO2 to styrene oxide over ordered mesoporous MCM-41-Imi/Br catalyst. Appl. Catal. B-Environ. 2013, 136–137, 150–159.

    Article  Google Scholar 

  33. Banerji, S.; Hide, B. R. S.; James, J. R.; Noble, M. E. M.; Jackson, D. G. Distinctive properties of the hyaluronanbinding domain in the lymphatic endothelial receptor lyve-1 and their implications for receptor function. J. Biol. Chem. 2010, 285, 10724–10735.

    Article  Google Scholar 

  34. Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y. H.; Franz, S.; Delfgaauw, J.; Chang, J. M.; Choi, H. Y.; Campbell, K. N.; Kim, K. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938.

    Article  Google Scholar 

  35. Stanisz, G. J.; Henkelman, R. M. Gd-DTPA relaxivity depends on macromolecular content. Magn. Reson. Med. 2000, 44, 665–667.

    Article  Google Scholar 

  36. Muharnmad, F.; Guo, M. Y.; Qi, W. X.; Sun, F. X.; Wang, A. F.; Guo, Y. J.; Zhu, G. S. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781.

    Article  Google Scholar 

  37. Zhao, W. W.; Cui, B.; Peng, H. X.; Qiu, H. J.; Wang, Y. Y. Novel method to investigate the interaction force between etoposide and APTES-functionalized Fe3O4@nSiO2@mSiO2 nanocarrier for drug loading and release processes. J. Phys. Chem. C 2015, 119, 4379–4386.

    Article  Google Scholar 

  38. Mathew, A.; Parambadath, S.; Park, S. S.; Ha, C. S. Hydrophobically modified spherical MCM-41 as nanovalve system for controlled drug delivery. Micropor. Mesopor. Mat. 2014, 200, 124–131.

    Article  Google Scholar 

  39. de la Torre, C.; Casanova, I.; Acosta, G.; Coll, C.; Moreno, M. J.; Albericio, F.; Aznar, E.; Mangues, R.; Royo, M.; Sancenon, F. et al. Gated mesoporous silica nanoparticles using a double-role circular peptide for the controlled and target-preferential release of doxorubicin in CXCR4-expresing lymphoma cells. Adv. Funct. Mater. 2015, 25, 687–695.

    Article  Google Scholar 

  40. Niu, C. C.; Wang, Z. G.; Lu, G. M.; Krupka, T. M.; Sun, Y.; You, Y. F.; Song, W. X.; Ran, H. T.; Li, P.; Zheng, Y. Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 2013, 34, 2307–2317.

    Article  Google Scholar 

  41. Yang, X. Y.; Wang, Y. S.; Huang, X.; Ma, Y. F.; Huang, Y.; Yang, R. C.; Duan, H. Q.; Chen, Y. S. Multi-functionalized graphene oxide based anticancer drug-carrier with dualtargeting function and pH-sensitivity. J. Mater. Chem. 2011, 21, 3448–3454.

    Article  Google Scholar 

  42. Chen, Z. W.; Li, Z. H.; Lin, Y. H.; Yin, M. L.; Ren, J. S.; Qu, X. G. Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 2013, 34, 1364–1371.

    Article  Google Scholar 

  43. Sun, J. S.; Xianyu, Y. L.; Li, M. M.; Liu, W. W.; Zhang, L.; Liu, D. B.; Liu, C.; Hu, G. Q.; Jiang, X. Y. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale 2013, 5, 5262–5265.

    Article  Google Scholar 

  44. Yu, L. L.; Bi, H. Facile synthesis and magnetic property of iron oxide/MCM-41 mesoporous silica nanospheres for targeted drug delivery. J. Appl. Phys. 2012, 111, 07B514.

    Google Scholar 

  45. Lankveld, D. P. K.; Oomen, A. G.; Krystek, P.; Neigh, A.; Troost-de Jong, A.; Noorlander, C. W.; Van Eijkeren, J. C. H.; Geertsma, R. E.; De Jong, W. H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350–8361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianrong Xu, Jun Zhu or Dannong He.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wu, G., Cheng, J. et al. Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocomposites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment. Nano Res. 9, 473–489 (2016). https://doi.org/10.1007/s12274-015-0929-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0929-1

Keywords

Navigation