Skip to main content
Log in

An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we developed a highly sensitive dual-mode imaging system using gold nanoparticles (GNPs) conjugated to various fluorophores in solid phantoms. The system consists of fluorescence-lifetime imaging microscopy (FLIM) for surface imaging, diffusion reflection (DR) for deep-tissue imaging (up to 1 cm), and metal-enhanced fluorescence (MEF). We detected quenching in the fluorescent intensity (FI) for the conjugation of both gold nanospheres (GNS) and gold nanorods (GNRs) to Fluorescein, which has an excitation peak at a wavelength shorter than the surface plasmon resonance (SPR) of both types of GNPs. Enhanced FI was detected in conjugation to Rhodamine B (RhB) and Sulforhodamine B (SRB), both with excitation peaks in the SPR regions of the GNPs. The enhanced FI was detected both in solution and in solid phantoms by the FLIM measurements. DR measurements detected the presence of GNRs within the solid phantoms by recording the dropped rates of light scattering in wavelengths corresponding to the absorption spectra of the GNRs. With the inclusion of MEF, this promising dual-mode imaging technique enables efficient and sensitive molecular and functional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.

    Article  Google Scholar 

  2. Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

    Article  Google Scholar 

  3. Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.

    Article  Google Scholar 

  4. Eghtedari, M.; Liopo, A. V.; Copland, J. A.; Oraevsky, A. A.; Motamedi, M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 2009, 9, 287–291.

    Article  Google Scholar 

  5. Von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.

    Article  Google Scholar 

  6. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257–264.

    Article  Google Scholar 

  7. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

    Article  Google Scholar 

  8. Zhang, Y. N.; Yu, J.; Birch, D. J. S.; Chen, Y. Gold nanorods for fluorescence lifetime imaging in biology. J. Biomed. Opt. 2010, 15, 020504.

    Article  Google Scholar 

  9. Copland, J. A.; Eghtedari, M.; Popov, V. L.; Kotov, N.; Mamedova, N.; Motamedi, M.; Oraevsky, A. A. Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol. 2004, 6, 341–349.

    Article  Google Scholar 

  10. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90.

    Article  Google Scholar 

  11. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 µm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  Google Scholar 

  12. Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: An in vivo study. Int. J. Nanomedicine 2011, 6, 2859–2864.

    Google Scholar 

  13. Fixler, D.; Nayhoz, T.; Ray, K. Diffusion reflection and fluorescence lifetime imaging microscopy study of fluorophore-conjugated gold nanoparticles or nanorods in solid phantoms. ACS Photonics 2014, 1, 900–905.

    Article  Google Scholar 

  14. Subhash, N.; Mallia, J. R.; Thomas, S. S.; Mathews, A.; Sebastian, P.; Madhavan, J. Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J. Biomed. Opt. 2006, 11, 014018.

    Article  Google Scholar 

  15. McMurdy, J.; Jay, G.; Suner, S.; Crawford, G. Photonicsbased in vivo total hemoglobin monitoring and clinical relevance. J. Biophotonics 2009, 2, 277–287.

    Article  Google Scholar 

  16. Ankri, R.; Taitelbaum, H.; Fixler, D. Reflected light intensity profile of two-layer tissues: Phantom experiments. J. Biomed. Opt. 2011, 16, 085001.

    Article  Google Scholar 

  17. Ankri, R.; Taitelbaum, H.; Fixler, D. On phantom experiment of the photon migration model in tissues. Open Opt. J. 2011, 5, 28–32.

    Article  Google Scholar 

  18. Ankri, R.; Duadi, H.; Motiei, M.; Fixler, D. In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods—Aquantitative study. J. Biophotonics 2012, 5, 263–273.

    Article  Google Scholar 

  19. Ankri, R.; Peretz, V.; Motiei, M.; Popovtzer, R.; Fixler, D. A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods. Int. J. Nanomedicine 2012, 7, 449–455.

    Google Scholar 

  20. Fixler, D.; Ankri, R. Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement. J. Biomed. Opt. 2013, 18, 61226.

    Article  Google Scholar 

  21. Ankri, R.; Leshem-Lev, D.; Fixler, D.; Popovtzer, R.; Motiei, M.; Kornowski, R.; Hochhauser, E.; Lev, E. I. Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Lett. 2014, 14, 2681–2687.

    Article  Google Scholar 

  22. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, 2006.

    Book  Google Scholar 

  23. Becker, W. Fluorescence lifetime imaging—Techniques and applications. J. Microsc. 2012, 247, 119–136.

    Article  Google Scholar 

  24. Lakowicz, J. R. Radiative decay engineering 5: Metalenhanced fluorescence and plasmon emission. Anal. Biochem. 2005, 337, 171–194.

    Article  Google Scholar 

  25. Ray, K.; Szmacinski, H.; Enderlein, J.; Lakowicz, J. R. Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. Appl. Phys. Lett. 2007, 90, 251116.

    Article  Google Scholar 

  26. Ray, K.; Badugu, R.; Lakowicz, J. R. Polyelectrolyte layer-bylayer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem. Mater. 2007, 19, 5902–5909.

    Article  Google Scholar 

  27. Ray, K.; Zhang, J.; Lakowicz, J. R. Fluorescence lifetime correlation spectroscopic study of fluorophore-labeled silver nanoparticles. Anal. Chem. 2008, 80, 7313–7318.

    Article  Google Scholar 

  28. Kobayashi, H.; Choyke, P. L. Target-cancer-cell-specific activatable fluorescence imaging probes: Rational design and in vivo applications. Acc. Chem. Res. 2011, 44, 83–90.

    Article  Google Scholar 

  29. Drake, C. R.; Miller, D. C.; Jones, E. F. Activatable optical probes for the detection of enzymes. Curr. Org. Synth. 2011, 8, 498–520.

    Article  Google Scholar 

  30. Li, X. H.; Gao, X. H.; Shi, W.; Ma, H. M. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 2014, 114, 590–659.

    Article  Google Scholar 

  31. Lavis, L. D.; Raines, R. T. Bright building blocks for chemical biology. ACS Chem. Biol. 2014, 9, 855–866.

    Article  Google Scholar 

  32. Prost, M.; Hasserodt, J. “Double gating”—A concept for enzyme-responsive imaging probes aiming at high tissue specificity. Chem. Commun. 2014, 50, 14896–14899.

    Article  Google Scholar 

  33. Razgulin, A.; Ma, N.; Rao, J. H. Strategies for in vivo imaging of enzyme activity: An overview and recent advances. Chem. Soc. Rev. 2011, 40, 4186–4216.

    Article  Google Scholar 

  34. Hutter, E.; Maysinger, D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 2013, 34, 497–507.

    Article  Google Scholar 

  35. Zhang, J. M.; Li, C.; Zhang, X.; Huo, S. D.; Jin, S. B.; An, F. F.; Wang, X. D.; Xue, X. D.; Okeke, C. I.; Duan, G. Y. et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 2015, 42, 103–111.

    Article  Google Scholar 

  36. Cheng, W.; Chen, Y. L.; Yan, F.; Ding, L.; Ding, S. J.; Ju, H. X.; Yin, Y. B. Ultrasensitive scanometric strategy for detection of matrix metalloproteinases using a histidine tagged peptide-Au nanoparticle probe. Chem. Commun. 2011, 47, 2877–2879.

    Article  Google Scholar 

  37. Park, S. Y.; Lee, S. M.; Kim, G. B.; Kim, Y. P. Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Gold Bull. 2012, 45, 213–219.

    Article  Google Scholar 

  38. Tira, D. S.; Focsan, M.; Ulinici, S.; Maniu, D.; Astilean, S. Rhodamine B-coated gold nanoparticles as effective “turn-on” fluorescent sensors for detection of zinc II ions in water. Spectrosc. Lett. 2014, 47, 153–159.

    Article  Google Scholar 

  39. Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000, 317, 517–523.

    Article  Google Scholar 

  40. Geddes, C. D.; Lakowicz, J. R. Editorial: Metal-enhanced fluorescence. J. Fluoresc. 2002, 12, 121–129.

    Article  Google Scholar 

  41. Ming, T.; Zhao, L.; Yang, Z.; Chen, H. J.; Sun, L. D.; Wang, J. F.; Yan, C. H. Strong polarization dependence of plasmonenhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896–3903.

    Article  Google Scholar 

  42. Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 2014, 8, 8392–8406.

    Article  Google Scholar 

  43. Kang, K. A.; Wang, J. T. Smart dual-mode fluorescent gold nanoparticle agents. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2014, 6, 398–409.

    Google Scholar 

  44. Enüstün, B. V.; Turkevich, J. Coagulation of colloidal gold. J. Am. Chem. Soc. 1963, 85, 3317–3328.

    Article  Google Scholar 

  45. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  46. Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dror Fixler or Krishanu Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnoy, E.A., Fixler, D., Popovtzer, R. et al. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. Nano Res. 8, 3912–3921 (2015). https://doi.org/10.1007/s12274-015-0891-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0891-y

Keywords

Navigation