Skip to main content

Advertisement

Log in

Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using Multispectral optoacoustic tomography

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multispectral optoacoustic tomography (MSOT) is an emerging imaging technology that offers several advantages over traditional modalities, particularly in its ability to resolve optical contrast at depth on the microscopic scale. While potential applications include the early detection of tumors below clinical thresholds set by current technology, the lack of tumor-specific contrast agents limits the use of MSOT imaging. Therefore, we constructed highly stable nano-contrast agents by coating gold nanorods (GNRs) with either polyacrylic acid (PAA) or aminefunctionalized mesoporous silica (MS). Syndecan-1, which has been shown to target insulin-like growth factor 1 receptor (IGF1-R) (upregulated in pancreatic tumors), was conjugated on the surface of PAA-coated GNRs (PAA-GNRs) or MS-coated GNRs (MS-GNRs) to create tumor-targeted nanoparticles. In vitro, tumor targeting of nanoparticles was assessed with flow cytometry. In S2VP10L cells (positive for IGF1-R), the syndecan-1 MS-GNRs (Syndecan-MS-GNRs) demonstrated an increase in OA signal, 10x, compared to syndecan-1 PAAGNRs (Syndecan-PAA-GNRs). Minimal binding was observed in MiaPaca-2 cells (negative for IGF1-R). In vivo, tumor specific targeting of Syndecan-MS-GNRs was evaluated using a murine orthotopic pancreatic cancer model. The Syndecan- MS-GNRs demonstrated significantly greater accumulation within pancreatic tumors than in off-target organs such as the liver. Mice implanted with the IGF1-R negative MiaPaca-2 cells did not demonstrate specific tumor targeting. In summary, we report that targeted nano-contrast agents (Syndecan-MS-GNRs) can successfully detect orthotopic pancreatic tumors with minimum off-target binding in vivo using MSOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eloubeidi, M. A.; Chen, V. K.; Eltoum, I. A.; Jhala, D.; Chhieng, D. C.; Jhala, N.; Vickers, S. M.; Wilcox, C. M. Endoscopic ultrasound-guided fine needle aspiration biopsy of patients with suspected pancreatic cancer: Diagnostic accuracy and acute and 30-day complications. Am. J. Gastroenterol. 2003, 98, 2663–2668.

    Google Scholar 

  2. Vaccaro, V.; Sperduti, I.; Milella, M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 365, 768–769.

    Article  Google Scholar 

  3. Werner, J.; Combs, S. E.; Springfeld, C.; Hartwig, W.; Hackert, T.; Buchler, M. W. Advanced-stage pancreatic cancer: Therapy options. Nat. Rev. Clin. Oncol. 2013, 10, 323–333.

    Article  Google Scholar 

  4. Von Hoff, D. D.; Ervin, T.; Arena, F. P.; Chiorean, E. G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S. A.; Ma, W. W.; Saleh, M. N. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703.

    Article  Google Scholar 

  5. Cao, H.; Le, D.; Yang, L. X. Current status in chemotherapy for advanced pancreatic adenocarcinoma. Anticancer Res. 2013, 33, 1785–1791.

    Google Scholar 

  6. Bilimoria, K. Y.; Bentrem, D. J.; Ko, C. Y.; Stewart, A. K.; Winchester, D. P.; Talamonti, M. S. National failure to operate on early stage pancreatic cancer. Ann. Surg. 2007, 246, 173–180.

    Article  Google Scholar 

  7. Kaur, S.; Baine, M. J.; Jain, M.; Sasson, A. R.; Batra, S. K. Early diagnosis of pancreatic cancer: Challenges and new developments. Biomark. Med. 2012, 6, 597–612.

    Article  Google Scholar 

  8. Hosoki, T. Dynamic CT of pancreatic tumors. AJR Am. J. Roentgenol. 1983, 140, 959–965.

    Article  Google Scholar 

  9. Sofuni, A.; Iijima, H.; Moriyasu, F.; Nakayama, D.; Shimizu, M.; Nakamura, K.; Itokawa, F.; Itoi, T. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J. Gastroenterol. 2005, 40, 518–525.

    Article  Google Scholar 

  10. Dietrich, C. F.; Ignee, A.; Braden, B.; Barreiros, A. P.; Ott, M.; Hocke, M. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin. Gastroenterol. Hepatol. 2008, 6, 590–597, e591.

    Article  Google Scholar 

  11. Ntziachristos, V.; Ripoll, J.; Wang, L. V.; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313–320.

    Article  Google Scholar 

  12. Mallidi, S.; Luke, G. P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221.

    Article  Google Scholar 

  13. Kimbrough, C. W.; Khanal, A.; Zeiderman, M.; Khanal, B. R.; Burton, N. C.; McMasters, K. M.; Vickers, S. M.; Grizzle, W. E.; McNally, L. R. Targeting acidity in pancreatic adenocarcinoma: Multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin. Cancer Res. 2015, 21, 4576–4585.

    Article  Google Scholar 

  14. Luker, G. D.; Luker, K. E. Optical imaging: Current applications and future directions. J. Nucl. Med. 2008, 49, 1–4.

    Article  Google Scholar 

  15. Mehrmohammadi, M.; Yoon, S. J.; Yeager, D.; Emelianov, S. Y. Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imaging 2013, 2, 89–105.

    Article  Google Scholar 

  16. Hudson, S. V.; Huang, J. S.; Yin, W. Y.; Albeituni, S.; Rush, J.; Khanal, A.; Yan, J.; Ceresa, B. P.; Frieboes, H. B.; McNally, L. R. Targeted noninvasive imaging of EGFRexpressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 2014, 74, 6271–6279.

    Article  Google Scholar 

  17. Ho, C. J.; Balasundaram, G.; Driessen, W.; McLaren, R.; Wong, C. L.; Dinish, U. S.; Attia, A. B. E.; Ntziachristos, V.; Olivo, M. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci. Rep. 2014, 4, 5342.

    Google Scholar 

  18. Tucker-Schwartz, J. M.; Meyer, T. A.; Patil, C. A.; Duvall, C. L.; Skala, M. C. In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express 2012, 3, 2881–2895.

    Article  Google Scholar 

  19. Hu, X. G.; Gao, X. H. Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys. Chem. Chem. Phys. 2011, 13, 10028–10035.

    Article  Google Scholar 

  20. Luo, T.; Huang, P.; Gao, G.; Shen, G. X.; Fu, S.; Cui, D. X.; Zhou, C. Q.; Ren, Q. S. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CTand NIR fluorescence imaging. Opt. Express 2011, 19, 17030–17039.

    Article  Google Scholar 

  21. Huang, J. Y.; Park, J.; Wang, W.; Murphy, C. J.; Cahill, D. G. Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution. ACS Nano 2013, 7, 589–597.

    Article  Google Scholar 

  22. Bao, C. C.; Beziere, N.; del Pino, P.; Pelaz, B.; Estrada, G.; Tian, F. R.; Ntziachristos, V.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small 2013, 9, 68–74.

    Article  Google Scholar 

  23. Beauvais, D. M.; Rapraeger, A. C. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J. Cell Sci. 2010, 123, 3796–3807.

    Article  Google Scholar 

  24. Rapraeger, A. C.; Ell, B. J.; Roy, M.; Li, X. H.; Morrison, O. R.; Thomas, G. M.; Beauvais, D. M. Vascular endothelialcadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between aVß3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J 2013, 280, 2194–2206.

    Article  Google Scholar 

  25. Rapraeger, A. C. Synstatin: A selective inhibitor of the syndecan-1-coupled IGF1R-avß3 integrin complex in tumorigenesis and angiogenesis. FEBS J 2013, 280, 2207–2215.

    Article  Google Scholar 

  26. Kimbrough, C. W.; Hudson, S.; Khanal, A.; Egger, M. E.; McNally, L. R. Orthotopic pancreatic tumors detected by optoacoustic tomography using Syndecan-1. J. Surg. Res. 2015, 193, 246–254.

    Article  Google Scholar 

  27. Wu, C. L.; Xu, Q. H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25, 9441–9446.

    Article  Google Scholar 

  28. Kirui, D. K.; Krishnan, S.; Strickland, A. D.; Batt, C. A. PAAderived gold nanorods for cellular targeting and photothermal therapy. Macromol. Biosci. 2011, 11, 779–788.

    Article  Google Scholar 

  29. Huang, J. S.; Egger, M. E.; Grizzle, W. E.; McNally, L. R. MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech. Histochem. 2013, 88, 397–402.

    Article  Google Scholar 

  30. McNally, L. R.; Welch, D. R.; Beck, B. H.; Stafford, L. J.; Long, J. W.; Sellers, J. C.; Huang, Z. Q.; Grizzle, W. E.; Stockard, C. R.; Nash, K. T. et al. KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clin. Exp. Metastasis 2010, 27, 591–600.

    Article  Google Scholar 

  31. Su, J. L.; Wang, B.; Wilson, K. E.; Bayer, C. L.; Chen, Y. S.; Kim, S.; Homan, K. A.; Emelianov, S. Y. Advances in clinical and biomedical applications of photoacoustic imaging. Expert Opin. Med. Diagn. 2010, 4, 497–510.

    Article  Google Scholar 

  32. Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

    Article  Google Scholar 

  33. Conversano, F.; Soloperto, G.; Greco, A.; Ragusa, A.; Casciaro, E.; Chiriacò, F.; Demitri, C.; Gigli, G.; Maffezzoli, A.; Casciaro, S. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. Int. J. Nanomedicine 2012, 7, 4373–4389.

    Google Scholar 

  34. Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

    Article  Google Scholar 

  35. Jing, L. J.; Liang, X. L.; Deng, Z. J.; Feng, S. S.; Li, X. D.; Huang, M. M.; Li, C. H.; Dai, Z. F. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 2014, 35, 5814–5821.

    Article  Google Scholar 

  36. Nguyen-Huy, C.; Kim, N.; Nguyen-Phan, T. D.; Yoo, I. K.; Shin, E. W. Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses. Nanoscale Res. Lett. 2014, 9, 462.

    Article  Google Scholar 

  37. Dong, A.; Randolph, T. W.; Carpenter, J. F. Entrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride. J. Biol. Chem. 2000, 275, 27689–27693.

    Google Scholar 

  38. Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc. 2003, 125, 4700–4701.

    Article  Google Scholar 

  39. Szatmári, T.; Dobra, K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front. Oncol. 2013, 3, 310.

    Article  Google Scholar 

  40. Urata, C.; Yamada, H.; Wakabayashi, R.; Aoyama, Y.; Hirosawa, S.; Arai, S.; Takeoka, S.; Yamauchi, Y.; Kuroda, K. Aqueous colloidal mesoporous nanoparticles with ethenylenebridged silsesquioxane frameworks. J. Am. Chem. Soc. 2011, 133, 8102–8105.

    Article  Google Scholar 

  41. Yamada, H.; Urata, C.; Ujiie, H.; Yamauchi, Y.; Kuroda, K. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm. Nanoscale 2013, 5, 6145–6153.

    Article  Google Scholar 

  42. LeBeau, A. M.; Brennen, W. N.; Aggarwal, S.; Denmeade, S. R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009, 8, 1378–1386.

    Article  Google Scholar 

  43. Yang, L.; Sajja, H. K.; Cao, Z.; Qian, W.; Bender, L.; Marcus, A. I.; Lipowska, M.; Wood, W. C.; Wang, Y. A. uPARtargeted optical imaging contrasts as theranostic agents for tumor margin detection. Theranostics 2013, 4, 106–118.

    Article  Google Scholar 

  44. Conejo, J. R.; Kleeff, J.; Koliopanos, A.; Matsuda, K.; Zhu, Z. W.; Goecke, H.; Bicheng, N.; Zimmermann, A.; Korc, M.; Friess, H. et al. Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int. J. Cancer 2000, 88, 12–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lacey R. McNally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanal, A., Ullum, C., Kimbrough, C.W. et al. Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using Multispectral optoacoustic tomography. Nano Res. 8, 3864–3877 (2015). https://doi.org/10.1007/s12274-015-0886-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0886-8

Keywords

Navigation