Skip to main content
Log in

Integration of chemoselective ligation with enzymespecific catalysis: Saccharic colorimetric analysis using aminooxy/hydrazine-functionalized gold nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Here we developed a saccharic colorimetric method based on the combination of chemoselective ligation and enzyme-specific catalysis using aminooxy/hydrazine-functionalized gold nanoparticles (AO/AuNPs or H/AuNPs). In the detection of galactose (Gal), galactohexodialdose (GHDA), the galactose oxidase (GalOx)-catalyzed product, has an aldehyde group, which allows it to chemoselectively react with an aminooxy or hydrazine group at the outer layer of AO/AuNPs or H/AuNPs by oxime/hydrazone click chemistry to form oxime or hydrozone. Consequently, through the specific recognition of 1,4-phenylenediboronic acid (PDBA) on cis-diols, GHDA, which contains two pairs of hydroxyls in the cis form, can bind not only with AO/AuNPs or H/AuNPs, but also with PDBA to form boronate diester, thereby triggering the aggregation of AuNPs and causing the corresponding color change. As GalOx catalyzed specific substrates, the amount of Gal correlated with the production of GHDA and the extent of AuNPs aggregation, thus allowing a simple and easily operatable colorimetric method for Gal detection to be developed. Under the optimized experimental conditions, the ratios of absorbance at a wavelength of 617 nm to that at 536 nm vary linearly with the logarithmic values of Gal concentrations within a wide range of 500 nM to 5 mM. Moreover, this colorimetric method shows anti-interference capability and high sensitivity with a detection limit of 21 nM. Thus, a universal platform for accurate and specific colorimetric analysis can be established through the integration of chemoselective ligation with enzyme specific catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirksen, A.; Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjugate Chem. 2008, 19, 2543–2548.

    Article  Google Scholar 

  2. Zhang, Y.; Yu, M.; Zhang, C.; Ma, W. F.; Zhang, Y. T.; Wang, C. C.; Lu, H. J. Highly selective and ultra fast solidphase extraction of N-glycoproteome by oxime click chemistry using aminooxy-functionalized magnetic nanoparticles. Anal. Chem. 2014, 86, 7920–7924.

    Article  Google Scholar 

  3. Kitov, P. I.; Vinals, D. F.; Ng, S.; Tjhung, K. F.; Derda, R. Rapid, hydrolytically stable modification of aldehydeterminated proteins and phage libraries. J. Am. Chem. Soc. 2014, 136, 8149–8152.

    Article  Google Scholar 

  4. Raindlová, V.; Pohl, R.; Šanda, M.; Hocek, M. Direct polymerase synthesis of reactive aldehyde-functionalized dna and its conjugation and staining with hydrazines. Angew. Chem., Int. Ed. 2010, 49, 1064–1066.

    Article  Google Scholar 

  5. Chen, J.; Shah, P.; Zhang, H. Solid phase extraction of Nlinked glycopeptides using hydrazide tip. Anal. Chem. 2013, 85, 10670–10674.

    Article  Google Scholar 

  6. Kajisa, T.; Sakata, T. Fundamental properties of phenylboronicacid- coated gate field-effect transistor for saccharide sensing. ChemElectroChem 2014, 1, 1647–1655.

    Article  Google Scholar 

  7. Li, J.; Liu, L. L.; Wang, P. G.; Yang, Y.; Zheng, J. B. Amplified detection of saccharide based on redox-poly(phenolco- 3-hydroxyphenylboronic acid) coupling with a redox cycling. Sensor. Actuat. B-Chem. 2014, 198, 219–224.

    Article  Google Scholar 

  8. Kejík, Z.; Bríza, T.; Králová, J.; Martásek, P.; Král, V. Selective recognition of a saccharide-type tumor marker with natural and synthetic ligands: A new trend in cancer diagnosis. Anal. Bioanal. Chem. 2010, 398, 1865–1870.

    Article  Google Scholar 

  9. Sun, X. L.; Zhu, B.; Ji, D. K.; Chen, Q. B.; He, X. P.; Chen, G. R.; James, T. D. Selective fluorescence detection of monosaccharides using a material composite formed between graphene oxide and boronate-based receptors. ACS Appl. Mater. Interfaces 2014, 6, 10078–10082.

    Article  Google Scholar 

  10. Kong, K. V.; Ho, C. J. H.; Gong, T. X.; Lau, W. K. O.; Olivo, M. Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens Bioelectron 2014, 56, 186–191.

    Article  Google Scholar 

  11. Li, Y. P.; Jiang, L.; Zhang, T.; Lin, M.; Tian, D. B.; Huang, H. Colorimetric detection of glucose using a boronic acid derivative receptor attached to unmodified AuNPs. Chin. Chem. Lett. 2014, 25, 77–79.

    Article  Google Scholar 

  12. Unnikrishnan, B.; Palanisamy, S.; Chen, S. M. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens. Bioelectron. 2013, 39, 70–75.

    Article  Google Scholar 

  13. Kim, M. I.; Shim, J.; Li, T. H.; Woo, M. A.; Cho, D.; Lee, J.; Park, H. G. Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 2012, 137, 1137–1143.

    Article  Google Scholar 

  14. Gokoglan, T. C.; Soylemez, S.; Kesik, M.; Toksabay, S.; Toppare, L. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chem. 2015, 172, 219–224.

    Article  Google Scholar 

  15. Lyons, C. T.; Stack, T. D. P. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models. Coordin. Chem. Rev. 2013, 257, 528–540.

    Article  Google Scholar 

  16. Kanyong, P.; Pemberton, R. M.; Jackson, S. K.; Hart, J. P. Development of an amperometric screen-printed galactose biosensor for serum analysis. Anal. Biochem. 2013, 435, 114–119.

    Article  Google Scholar 

  17. Hartmans, S.; de Vries, H. T.; Beijer, P.; Brady, R. L.; Hofbauer, M.; Haandrikman, A. J. Production of oxidized guar galactomannan and its applications in the paper industry. In Hemicelluloses: Science and Technology; Gatenholm, P.; Tenkanen, M., Eds.; American Chemical Society: Washington, DC,2004; pp 360–371.

    Google Scholar 

  18. Ioannou, A.; Cini, E.; Timofte, R. S.; Flitsch, S. L.; Turner, N. J.; Linclau, B. Heavily fluorinated carbohydrates as enzyme substrates: Oxidation of tetrafluorinated galactose by galactose oxidase. Chem. Commun. 2011, 47, 11228–11230.

    Article  Google Scholar 

  19. Rannes, J. B.; Ioannou, A.; Willies, S. C.; Grogan, G.; Behrens, C.; Flitsch, S. L.; Turner, N. J. Glycoprotein labeling using engineered variants of galactose oxidase obtained by directed evolution. J. Am. Chem. Soc. 2011, 133, 8436–8439.

    Article  Google Scholar 

  20. Turner, N. J. Enantioselective oxidation of C–O and C–N bonds using oxidases. Chem. Rev. 2011, 111, 4073–4087.

    Article  Google Scholar 

  21. Leppänen, A. S.; Xu, C. L.; Parikka, K.; Eklund, P.; Sjö holm, R.; Brumer, H.; Tenkanen, M.; Willfö r, S. Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohyd. Polym. 2014, 100, 46–54.

    Article  Google Scholar 

  22. Parikka, K.; Leppänen, A. S.; Pitkänen, L.; Reunanen, M.; Willför, S.; Tenkanen, M. Oxidation of polysaccharides by galactose oxidase. J. Agric. Food Chem. 2010, 58, 262–271.

    Article  Google Scholar 

  23. Charmantray, F.; Touisni, N.; Hecquet, L.; Mousty, C. Amperometric biosensor based on galactose oxidase immobilized in clay matrix. Electroanalysis 2013, 25, 630–635.

    Article  Google Scholar 

  24. Tkác, J.; Gemeiner, P.; Šturdík, E. Rapid and sensitive galactose oxidase-peroxidase biosensor for galactose detection with prolonged stability. Biotechnol. Technique 1999, 13, 931–936.

    Article  Google Scholar 

  25. Deng, J. J.; Yu, P.; Yang, L. F.; Mao, L. Q. Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: Toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients. Anal. Chem. 2013, 85, 2516–2522.

    Article  Google Scholar 

  26. Zhang, M.; Liu, Y. Q.; Ye, B. C. Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 2011, 136, 4558–4562.

    Article  Google Scholar 

  27. Ge, S. G.; Liu, F.; Liu, W. Y.; Yan, M.; Song, X. R.; Yu, J. H. Colorimetric assay of K-562 cells based on folic acidconjugated porous bimetallic Pd@Au nanoparticles for pointof- care testing. Chem. Commun. 2014, 50, 475–477.

    Article  Google Scholar 

  28. Gu, Y. J.; Cheng, J. P.; Lin, C. C.; Lam, Y. W.; Cheng, S. H.; Wong, W. T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharm. 2009, 237, 196–204.

    Article  Google Scholar 

  29. Li, H. X.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039.

    Article  Google Scholar 

  30. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221.

    Article  Google Scholar 

  31. Lou, T. T.; Chen, Z. P.; Wang, Y. Q.; Chen, L. X. Blue-tored colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 1568–1573.

    Article  Google Scholar 

  32. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

    Article  Google Scholar 

  33. Chen, G. H.; Chen, W. Y.; Yen, Y. C.; Wang, C. W.; Chang, H. T.; Chen, C. F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849.

    Article  Google Scholar 

  34. Zhu, K.; Zhang, Y.; He, S.; Chen, W. W.; Shen, J. Z.; Wang, Z.; Jiang, X. Y. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal. Chem. 2012, 84, 4267–4270.

    Article  Google Scholar 

  35. Liu, D. B.; Chen, W. W.; Wei, J. H.; Li, X. B.; Wang, Z.; Jiang, X. Y. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185–4191.

    Article  Google Scholar 

  36. Kong, B.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yu, Y. Y.; Shi, G. Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem., Int. Ed. 2011, 50, 1837–1840.

    Article  Google Scholar 

  37. Brahim, S. I.; Maharajh, D.; Narinesingh, D.; Guiseppi-Elie, A. Design and characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Anal. Lett. 2002, 35, 797–812.

    Article  Google Scholar 

  38. Şenel, M.; Bozgeyik, İ.; Çevik, E.; Fatih Abasiyanik, M. A novel amperometric galactose biosensor based on galactose oxidase-poly(N-glycidylpyrrole-co-pyrrole). Synthetic Met. 2011, 161, 440–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxia Wang or Genxi Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lv, J., Wang, X. et al. Integration of chemoselective ligation with enzymespecific catalysis: Saccharic colorimetric analysis using aminooxy/hydrazine-functionalized gold nanoparticles. Nano Res. 8, 3853–3863 (2015). https://doi.org/10.1007/s12274-015-0885-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0885-9

Keywords

Navigation