Skip to main content
Log in

Prediction of a large-gap quantum-spin-Hall insulator: Diamond-like GaBi bilayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  2. Hasan, M. Z.; Moore, J. E. Three-dimensional topological insulators. Ann. Rev. Cond. Mat. Phys. 2011, 2, 55–78.

    Article  Google Scholar 

  3. Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

    Article  Google Scholar 

  4. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Quantum spin hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

    Article  Google Scholar 

  5. Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin hall phase. Nature 2008, 452, 970–974.

    Article  Google Scholar 

  6. Chen, Y. L.; Analytis, J. G.; Chu, J.-H.; Liu, Z. K.; Mo, S.-K.; Qi, X.-L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

    Article  Google Scholar 

  7. Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  8. Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

    Article  Google Scholar 

  9. Souma, S.; Eto, K.; Nomura, M.; Nakayama, K.; Sato, T.; Takahashi, T.; Segawa, K.; Ando, Y. Topological surface states in lead-based ternary telluride Pb(Bi1–x Sbx)2Te4. Phys. Rev. Lett. 2012, 108, 116801.

    Article  Google Scholar 

  10. Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471.

    Article  Google Scholar 

  11. Xiao, D.; Yao, Y. G.; Feng, W. X.; Wen, J.; Zhu, W. G.; Chen, X. Q.; Stocks, G. M.; Zhang, Z. Y. Half-heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 2010, 105, 096404.

    Article  Google Scholar 

  12. Lin, H.; Wray, L. A.; Xia, Y. Q.; Xu, S. Y.; Jia, S.; Cava, R. J.; Bansil, A.; Hasan, M. Z. Half-heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010, 9, 546–549.

    Article  Google Scholar 

  13. Liu, Z.; Liu, C.-X.; Wu, Y.-S.; Duan, W.-H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805.

    Article  Google Scholar 

  14. Zhang, X.; Zhang, H. J.; Wang, J.; Felser, C.; Zhang, S.-C. Actinide topological insulator materials with strong interaction. Science 2012, 335, 1464–1466.

    Article  Google Scholar 

  15. Wang, Z. F.; Yao, M.-Y.; Ming, W. M.; Miao, L.; Zhu, F. F.; Liu, C. H.; Gao, C. L.; Qian, D.; Jia, J.-F.; Liu, F. Creation of helical dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.

    Article  Google Scholar 

  16. Yang, F.; Miao, L.; Wang, Z. F.; Yao, M.-Y.; Zhu, F. F.; Song, Y. R.; Wang, M.-X.; Xu, J.-P.; Fedorov, A. V.; Sun, Z. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 2012, 109, 016801.

    Article  Google Scholar 

  17. Luo, W.; Xiang, H. J. Room temperature quantum spin hall insulators with a buckled square lattice. Nano Lett. 2015, 15, 3230–3235.

    Article  Google Scholar 

  18. Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap twodimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

    Article  Google Scholar 

  19. Novoselov, K. S.; Fal’ ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  20. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  21. Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

    Article  Google Scholar 

  22. Zhao, M. W.; Dong, W. Z.; Wang, A. Z. Two-dimensional carbon topological insulators superior to graphene. Sci. Rep. 2013, 3, 3532.

    Google Scholar 

  23. Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a kagome spin lattice: The case of a manganese bisdithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

    Article  Google Scholar 

  24. Wang, Z. F.; Su, N. H.; Liu, F. Prediction of a twodimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.

    Article  Google Scholar 

  25. Wang, A. Z.; Zhang, X. M.; Zhao, M. W. Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale 2014, 6, 11157–11162.

    Article  Google Scholar 

  26. Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello, M. Nucleation mechanism for the direct graphiteto- diamond phase transition. Nat. Mater. 2011, 10, 693–697.

    Article  Google Scholar 

  27. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  28. Zhang, Z. H.; Zeng, X. C.; Guo, W. L. Fluorinating hexagonal boron nitride/graphene multilayers into hybrid diamondlike nanofilms with tunable energy gap. J. Phys. Chem. C 2011, 115, 21678–21684.

    Article  Google Scholar 

  29. De Marcillac, P.; Coron, N.; Dambier, G.; Leblanc, J.; Moalic, J. P. Experimental detection of a-particles from the radioactive decay of natural bismuth. Nature 2003, 422, 876–878.

    Article  Google Scholar 

  30. Zhang, H. B.; Freimuth, F.; Bihlmayer, G.; Blügel, S.; Mokrousov, Y. Topological phases of Bi (111) bilayer in an external exchange field. Phys. Rev. B 2012, 86, 035104.

    Article  Google Scholar 

  31. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  34. Perdew, J. P. Density functional theory and the band gap problem. Int. J. Quantum Chem. 1986, 30, 451.

    Article  Google Scholar 

  35. Wang, X. P.; Zhao, M. W.; He, T.; Wang, Z. H.; Liu, X. D. Can cation vacancy defects induce room temperature ferromagnetism in GaN? Appl. Phys. Lett. 2013, 102, 062411.

    Article  Google Scholar 

  36. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened coulomb potential” J. Chem. Phys. 2003, 118, 8207.

    Article  Google Scholar 

  37. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened coulomb potential” J. Chem. Phys. 2006, 124, 219906.

    Article  Google Scholar 

  38. Alfè, D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 2009, 180, 2622–2633.

    Article  Google Scholar 

  39. Ma, Y. D.; Li, X.; Kou, L. Z.; Yan, B. H.; Niu, C. W.; Dai, Y.; Heine, T. Two-dimensional inversion-asymmetric topological insulators in functionalized III-Bi bilayers. Phys. Rev. B 2015, 91, 235306.

    Article  Google Scholar 

  40. Li, L. Y.; Zhang, X. M.; Chen, X.; Zhao, M. W. Giant topological nontrivial band gaps in chloridized gallium bismuthide. Nano Lett. 2015, 15, 1296–1301.

    Article  Google Scholar 

  41. Bychkov, Y. A.; Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78.

    Google Scholar 

  42. Žutic, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323.

    Article  Google Scholar 

  43. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  44. Xu, Y.; Yan, B. H; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P. Z; Duan, W. H; Zhang, S.-C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Article  Google Scholar 

  45. Niu, C. W.; Bihlmayer, G.; Zhang, H. B.; Wortmann, D.; Blügel, S.; Mokrousov, Y. Functionalized bismuth films: Giant gap quantum spin hall and valley-polarized quantum anomalous hall states. Phys. Rev. B 2015, 91, 041303.

    Article  Google Scholar 

  46. Liu, C.-C.; Zhou, J.-J.; Yao, Y. G. Valley-polarized quantum anomalous hall phases and tunable topological phase transitions in half-hydrogenated Bi honeycomb monolayers. Phys. Rev. B 2015, 91, 165430.

    Article  Google Scholar 

  47. Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijun Du or Mingwen Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Du, A. & Zhao, M. Prediction of a large-gap quantum-spin-Hall insulator: Diamond-like GaBi bilayer. Nano Res. 8, 3823–3829 (2015). https://doi.org/10.1007/s12274-015-0882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0882-z

Keywords

Navigation