Skip to main content
Log in

Anelasticity of twinned CuO nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electronbeam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Millar, R. W. The heat capacities at low temperatures of “ferrous oxide,” magnetite and cuprous and cupric oxides. J. Am. Chem. Soc. 1929, 51, 215–222.

    Article  Google Scholar 

  2. Polyakov, B.; Dorogin, L. M.; Vlassov, S.; Antsov, M.; Kulis, P.; Kink, I.; Lohmus, R. In situ measurements of ultimate bending strength of CuO and ZnO nanowires. Eur. Phys. J. B 2012, 85, 366–371.

    Article  Google Scholar 

  3. Xue, X. Y.; Xing, L. L.; Chen, Y. J.; Shi, S. L.; Wang, Y. G.; Wang, T. H. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C 2008, 112, 12157–12160.

    Article  Google Scholar 

  4. Yoon, J. H.; Kim, J. S. Gas sensing properties of nanocrystalline SnO2-CuO compounds. Met. Mater. Int. 2010, 16, 773–777.

    Article  Google Scholar 

  5. Wang, P.; Zhao, X. H.; Li, B. J. ZnO-coated CuO nanowire arrays: Fabrications, optoelectronic properties, and photovoltaic applications. Opt. Express 2011, 19, 11271–11279.

    Article  Google Scholar 

  6. Yan, H.; Liu, X. W.; Xu, R.; Lv, P.; Zhao, P. H. Synthesis, characterization, electrical and catalytic properties of CuO nanowires. Mater. Res. Bull. 2013, 48, 2102–2105.

    Article  Google Scholar 

  7. Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 1956, 27, 1484–1491.

    Article  Google Scholar 

  8. Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.

    Google Scholar 

  9. Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426.

    Article  Google Scholar 

  10. Yue, Y. H.; Liu, P.; Zhang, Z.; Han, X. D.; Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011, 11, 3151–3155.

    Article  Google Scholar 

  11. Vlassov, S.; Polyakov, B.; Dorogin, L. M.; Vahtrus, M.; Mets, M.; Antsov, M.; Saar, R.; Romanov, A. E.; Lõhmus, A.; Lõhmus, R. Shape restoration effect in Ag–SiO2 core–shell nanowires. Nano Lett. 2014, 14, 5201–5205.

    Article  Google Scholar 

  12. Liang, H. Y.; Upmanyu, M.; Huang, H. C. Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B 2005, 71, 241403.

    Article  Google Scholar 

  13. Zheng, H.; Liu, Y.; Mao, S. X.; Wang, J. B.; Huang, J. Y. Beam-assisted large elongation of in situ formed Li2O nanowires. Sci. Rep. 2012, 2, 542.

    Google Scholar 

  14. Wang, Y. B.; Wang, L. F.; Joyce, H. J.; Gao, Q.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Gao, H. J. et al. Super deformability and Young’s modulus of GaAs nanowires. Adv. Mater. 2011, 23, 1356–1360.

    Google Scholar 

  15. Tan, E. P. S.; Zhu, Y.; Yu, T.; Dai, L.; Sow, C. H.; Tan, V. B. C.; Lim, C. T. Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 2007, 90, 163112.

    Article  Google Scholar 

  16. Polyakov, B.; Vlassov, S.; Dorogin, L. M.; Kulis, P.; Kink, I.; Lohmus, R. The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 2012, 606, 1393–1399.

    Article  Google Scholar 

  17. Zheng, X. J.; Zhu, L. L. Theoretical analysis of electric field effect on Young’s modulus of nanowires. Appl. Phys. Lett. 2006, 89, 153100.

    Google Scholar 

  18. Han, X. D.; Zhang, Y. F.; Zheng, K.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Lowtemperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.

    Article  Google Scholar 

  19. Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112–2118.

    Article  Google Scholar 

  20. Jiang, X. C.; Herricks, T.; Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338.

    Article  Google Scholar 

  21. Cai, S. M.; Matsushita, T.; Fujii, H.; Shirai, K.; Nonomura, T.; Tatsuoka, H.; Hsu, C. W.; Wu, Y. J.; Chou, L. J. Growth of Cu-Oxide nanowires on Cu substrates by thermal annealing. e-J. Surf. Sci. Nanotech. 2012, 10, 175–179.

    Article  Google Scholar 

  22. Zappa, D.; Comini, E.; Zamani, R.; Arbiol, J.; Morante, J. R.; Sberveglieri, G. Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators B: Chem. 2013, 182, 7–15.

    Article  Google Scholar 

  23. Hansen, B. J.; Chan, H. I.; Lu, J.; Lu, G. H.; Chen, J. H. Short-circuit diffusion growth of long bi-crystal CuO nanowires. Chem. Phys. Lett. 2011, 504, 41–45.

    Article  Google Scholar 

  24. Mema, R.; Yuan, L.; Du, Q. T.; Wang, Y. Q.; Zhou, G. W. Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 2011, 512, 87–91.

    Article  Google Scholar 

  25. Zheng, K.; Han, X. D.; Wang, L. H.; Zhang, Y. F.; Yue, Y. H.; Qin, Y.; Zhang, X. N.; Zhang, Z. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 2009, 9, 2471–2476.

    Article  Google Scholar 

  26. Liu, Y. J.; Nakamura, T.; Dwivedi, G.; Valarezo, A.; Sampath, S. Anelastic behavior of plasma-sprayed zirconia coatings. J. Am. Ceram. Soc. 2008, 91, 4036–4043.

    Article  Google Scholar 

  27. Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009, 324, 349–352.

    Article  Google Scholar 

  28. Tanimoto, H.; Sakai, S.; Mizubayashi, H. Anelasticity of nanocrystalline metals. Mater. Sci. Eng. A 2004, 370, 135–141.

    Article  Google Scholar 

  29. Ocelík, V.; Csach, K.; Kasardová, A.; Bengus, V. Z. Anelastic deformation processes in metallic glasses and activation energy spectrum model. Mater. Sci. Eng. A 1997, 226–228, 851–855.

    Article  Google Scholar 

  30. Pan, L. S.; Horibe, S. Anelastic behaviour of zirconia ceramics under monotonic and cyclic loadings. Acta Mater. 1997, 45, 463–469.

    Article  Google Scholar 

  31. Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 2006, 96, 075505.

    Article  Google Scholar 

  32. Sakai, S.; Tanimoto, H.; Otsuka, K.; Yamada, T.; Koda, Y.; Kita, E.; Mizubayashi, H. Elastic behaviors of high density nanocrystalline gold prepared by gas deposition method. Scripta Mater. 2001, 45, 1313–1319.

    Article  Google Scholar 

  33. Chen, B.; Gao, Q.; Wang, Y. B.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Jagadish, C. Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 2013, 13, 3169–3172.

    Article  Google Scholar 

  34. Juan, J. S.; Nó, M. L.; Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 2009, 4, 415–419.

    Article  Google Scholar 

  35. Wuttig, M.; Chun-Hung, L. Twinning pseudoelasticity in In-Tl. Acta Metall. 1983, 31, 1117–1122.

    Article  Google Scholar 

  36. Lakki, A.; Schaller, R.; Carry, C.; Benoit, W. High temperature anelastic and viscoplastic deformation of finegrained MgO-doped Al2O3. Acta Mater. 1998, 46, 689–700.

    Article  Google Scholar 

  37. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    Article  Google Scholar 

  38. Zheng, H.; Liu, Y.; Cao, F.; Wu, S. J.; Jia, S. F.; Cao, A. J.; Zhao, D. S.; Wang, J. B. Electron beam-assisted healing of nanopores in magnesium alloys. Sci. Rep. 2013, 3, 1920.

    Google Scholar 

  39. Hobbs, L. W. Radiation effects in analysis of inorganic specimens by TEM. In Introduction to Analytical Electron Microscopy; Hren, J. J.; Goldstein, J. I.; Joy, D. C., Eds.; Springer: New York, 1979; pp 437–480.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Zheng, H., Cao, F. et al. Anelasticity of twinned CuO nanowires. Nano Res. 8, 3687–3693 (2015). https://doi.org/10.1007/s12274-015-0868-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0868-x

Keywords

Navigation