Skip to main content
Log in

Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical Co3O4 porous nanowires (NWs) have been synthesized using a hydrothermal method followed by calcination. When employed as a cathode catalyst in non-aqueous Li-oxygen batteries, the Co3O4 NWs effectively improve both the round-trip efficiency and cycling stability, which can be attributed to the high catalytic activities of Co3O4 NWs for the oxygen reduction reaction and the oxygen evolution reaction during discharge and charge processes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. G.; He, P.; Zhou, H. S. A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 2011, 4, 4994–4999.

    Article  Google Scholar 

  2. Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

    Article  Google Scholar 

  3. Lu, Y. C.; Gasteiger, H. A.; Parent, M. C; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

    Article  Google Scholar 

  4. Zheng, J. P.; Liang, R. Y.; Hendrickson, M.; Plichta, E. J. Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 2008, 155, A432–A437.

    Article  Google Scholar 

  5. Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

    Article  Google Scholar 

  6. Zhao, N.; Li, C. L.; Guo, X. X. Review of methods for improving the cyclic stability of Li-air batteries by controlling cathode reactions. Energy Technol. 2014, 2, 317–423

    Article  Google Scholar 

  7. Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

    Article  Google Scholar 

  8. Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 3887–3890.

    Article  Google Scholar 

  9. Zhang, Z. A.; Zhou, G.; Chen, W.; Lai, Y. Q.; Li, J. Facile synthesisof Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. ECS Electrochem. Lett. 2014, 3, A8–A10.

    Article  Google Scholar 

  10. Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 392–396.

    Article  Google Scholar 

  11. Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

    Article  Google Scholar 

  12. Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D. Wang, L. M. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem. Commun. 2012, 48, 7598–7600.

    Article  Google Scholar 

  13. Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768.

    Article  Google Scholar 

  14. Débart, A.; Bao, J. L.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177–1182.

    Article  Google Scholar 

  15. Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  16. Du, H. M, Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87–98.

    Article  Google Scholar 

  17. Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

    Article  Google Scholar 

  18. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Article  Google Scholar 

  19. Kim, W. S.; Hwa, Y.; Kim, H. C.; Chio, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

    Article  Google Scholar 

  20. Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081–6085.

    Article  Google Scholar 

  21. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

    Google Scholar 

  22. Sun, B.; Huang X. D.; Chen, S. Q.; Munroe, P. R.; Wang, G. X. Porous graphene nanoarchitectures-An efficient catalyst for low charge-overpotential, long life and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145–3152.

    Article  Google Scholar 

  23. Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

    Article  Google Scholar 

  24. Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.

    Article  Google Scholar 

  25. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 2013, 6, 1772–1778.

    Article  Google Scholar 

  26. Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679–4684.

    Article  Google Scholar 

  27. Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J. G.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 2013, 6, 2518–2528.

    Article  Google Scholar 

  28. Lu, J.; Lei, Y.; Lau, K. C.; Luo, X. Y.; Du, P.; Wen, J. G.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W.; et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 2013, 4, 2383

    Google Scholar 

  29. Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3007.

    Article  Google Scholar 

  30. Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 2013, 4, 1060–1064.

    Article  Google Scholar 

  31. Fan, W. G.; Cui, Z. H.; Guo, X. X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. J. Phys. Chem. C 2013, 117, 2623–2627.

    Article  Google Scholar 

  32. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. Nano Lett. 2012, 12, 4333–4335.

    Article  Google Scholar 

  33. Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced charge transport in amorphous Li2O2. Chem. Mater. 2014, 26, 2952–2959.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, Y., Xu, J. et al. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 8, 576–583 (2015). https://doi.org/10.1007/s12274-014-0689-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0689-3

Keywords

Navigation