Skip to main content
Log in

A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a density functional theory study of a phase transition of a VS2 monolayer that can be tuned by the in-plane biaxial strain. This results in both a metal-insulator transition and a low spin-high spin magnetic transition. At low temperature, the semiconducting H-phase is stable and large strain (>3%) is required to provoke the transition. On the other hand, at room temperature (300 K), only a small tensile strain of 2% is needed to induce the phase transition from the semiconducting H-phase to the metallic T-phase together with the magnetic transition from high spin to low spin. The phase diagram dependence on both strain and temperature is also discussed in order to provide a better understanding of the phase stability of VS2 monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  Google Scholar 

  2. Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

    Article  Google Scholar 

  3. Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2007, 8, 323–327.

    Article  Google Scholar 

  4. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    Article  Google Scholar 

  5. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  Google Scholar 

  6. Marseglia, E. A. Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 1983, 3, 177–216.

    Article  Google Scholar 

  7. Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    Article  Google Scholar 

  8. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  9. Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

    Article  Google Scholar 

  10. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  11. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  12. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  13. Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586–24591.

    Article  Google Scholar 

  14. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    Article  Google Scholar 

  15. Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 2014, 118, 1515–1522.

    Article  Google Scholar 

  16. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  17. Gao, D. Q.; Xue, Q. X.; Mao, X. Z.; Wang, W. X.; Xu, Q.; Xue, D. S. Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 2013, 1, 5909–5916.

    Article  Google Scholar 

  18. Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX 2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701.

    Article  Google Scholar 

  19. Zhou, Y. G.; Wang, Z. G.; Yang, P.; Zu, X. T.; Yang, L.; Sun, X.; Gao, F. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 2012, 6, 9727–9736.

    Article  Google Scholar 

  20. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  21. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  22. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  23. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  24. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  Google Scholar 

  25. Wang, Q. B.; Zhou, C.; Wu, J.; Lü, T. A GGA + U study of the optical properties of vanadium doped ZnO with and without single intrinsic vacancy. Opt. Commun. 2013, 297, 79–84.

    Article  Google Scholar 

  26. Lin, H.; Wen, Y. W.; Zhang, C. X.; Zhang, L. L.; Huang, Y. H.; Shan, B.; Chen, R. A GGA+U study of lithium diffusion in vanadium doped LiFePO4. Solid State Commun. 2012, 152, 999–1003.

    Article  Google Scholar 

  27. Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

    Article  Google Scholar 

  28. Du, A. J.; Sanvito, S.; Smith, S. C. First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys. Rev. Lett. 2012, 108, 197207.

    Article  Google Scholar 

  29. Du, A. J.; Sanvito, S.; Li, Z.; Wang, D. W.; Jiao, Y.; Liao, T.; Sun, Q.; Ng, Y. H.; Zhu, Z. H.; Amal, R. et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 2012, 134, 4393–4397.

    Article  Google Scholar 

  30. Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

    Article  Google Scholar 

  31. Zhang, H.; Liu, L. M.; Lau, W. M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 2013, 1, 10821–10828.

    Article  Google Scholar 

  32. Ataca, C.; Şahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983–8999.

    Article  Google Scholar 

  33. Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

    Article  Google Scholar 

  34. Zhang, J.; Soon, J. M.; Loh, K. P.; Yin, J. H.; Ding, J.; Sullivian, M. B.; Wu, P. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 2007, 7, 2370–2376.

    Article  Google Scholar 

  35. Huisman, R.; de Jonge, R.; Haas, C.; Jellinek, F. Trigonal-prismatic coordination in solid compounds of transition metals. J. Solid State Chem. 1971, 3, 56–66.

    Article  Google Scholar 

  36. Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in MnX 2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994.

    Article  Google Scholar 

  37. Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382–3386.

    Article  Google Scholar 

  38. Kan, M.; Zhou, J.; Sun, Q.; Wang, Q.; Kawazoe, Y.; Jena, P. Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Phys. Rev. B 2012, 85, 155450.

    Article  Google Scholar 

  39. Wippermann, S.; Schmidt, W. G. Entropy explains metal-insulator transition of the Si(111) -In nanowire array. Phys. Rev. Lett. 2010, 105, 126102.

    Article  Google Scholar 

  40. Malliakas, C. D.; Kanatzidis, M. G. Nb-Nb interactions define the charge density wave structure of 2H-NbSe2. J. Am. Chem. Soc. 2013, 135, 1719–1722.

    Article  Google Scholar 

  41. Mansart, B.; Cottet, M. J. G.; Penfold, T. J.; Dugdale, S. B.; Tediosi, R.; Chergui, M.; Carbone, F. Evidence for a peierls phase-transition in a three-dimensional multiple charge-density waves solid. Proc. Natl. Acad. Sci. USA 2012, 109, 5603–5608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Hee Lee or Qiang Sun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, M., Wang, B., Lee, Y.H. et al. A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Res. 8, 1348–1356 (2015). https://doi.org/10.1007/s12274-014-0626-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0626-5

Keywords

Navigation