Skip to main content
Log in

Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The realization of plasmonic structures generally necessitates expensive fabrication techniques, such as electron beam and focused ion beam lithography, allowing for the top-down fabrication of low-dimensional structures. Another approach to make plasmonic structures in a bottom-up fashion is colloidal synthesis, which is convenient for liquid-state applications or very thin solid films where aggregation problems are an important challenge. The architectures prepared using these methods are typically not robust enough for easy handling and convenient integration. Therefore, developing a new plasmonic robust platform having large-scale dimensions without adversely affecting the plasmonic features is in high demand. As a solution, here we present a new plasmonic composite structure consisting of gold nanoparticles (Au NPs) incorporated into sucrose macrocrystals on a large scale, while preserving the plasmonic nature of the Au NPs and providing robustness in handling at the same time. As a proof of concept demonstration, we present the fluorescence enhancement of green CdTe quantum dots (QDs) via plasmonic coupling with these Au NPs in the sucrose crystals. The obtained composite material exhibits centimeter scale dimensions and the resulting quantum efficiency (QE) is enhanced via the interplay between the Au NPs and CdTe QDs by 58% (from 24% to 38%). Moreover, a shortening in the photoluminescence lifetime from 11.0 to 7.40 ns, which corresponds to a field enhancement factor of 2.4, is observed upon the introduction of Au NPs into the QD incorporated macrocrystals. These results suggest that such “sweet” plasmonic crystals are promising for large-scale robust platforms to embed plasmonic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  Google Scholar 

  2. Brolo, A. G. Plasmonics for future biosensors. Nat. Photon. 2012, 6, 709–713.

    Article  Google Scholar 

  3. Pelton, M.; Aizpurua, J.; Bryant, G. Metal-nanoparticle plasmonics. Laser Photon. Rev. 2008, 2, 136–159.

    Article  Google Scholar 

  4. Temnov, V. V. Ultrafast acousto-magneto-plasmonics. Nat. Photon. 2012, 6, 728–736.

    Article  Google Scholar 

  5. Ozel, T.; Hernandez Martinez, P. L.; Mutlugun, E.; Akin, O.; Nizamoglu, S.; Ozel, I. O.; Zhang, Q.; Xiong, Q. H.; Demir, H. V. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versusacceptor- selective plexcitons. Nano Lett. 2013, 13, 3065–3072.

    Article  Google Scholar 

  6. Xiao, M. D.; Jiang, R. B.; Wang, F.; Fang, C. H.; Wang, J. F.; Yu, J. C. Plasmon-enhanced chemical reactions. J. Mater. Chem. A 2013, 1, 5790–5805.

    Article  Google Scholar 

  7. Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 2012, 6, 737–748.

    Article  Google Scholar 

  8. Durach, M.; Rusina, A.; Stockman, M. I.; Nelson, K. Toward full spatiotemporal control on the nanoscale. Nano Lett. 2007, 7, 3145–3149.

    Article  Google Scholar 

  9. Israelowitz, M.; Amey, J.; Cong, T.; Sureshkumar, R. Spin coated plasmonic nanoparticle interfaces for photocurrent enhancement in thin film Si solar cells. J. Nanomater. 2014, 2014, 639458.

    Article  Google Scholar 

  10. Otto, T.; Müller, M.; Mundra, P.; Lesnyak, V.; Demir, H. V.; Gaponik, N.; Eychmuller, A. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity. Nano Lett. 2012, 12, 5348–5354.

    Article  Google Scholar 

  11. Kalytchuk, S.; Zhovtiuk, O.; Rogach, A. L. Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency. Appl. Phys. Lett. 2013, 103, 103105.

    Article  Google Scholar 

  12. Kim, Y.; Johnson, R. C.; Hupp, J. T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 2001, 1, 165–167.

    Article  Google Scholar 

  13. Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Qiu, J.; Misawa, H. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures. Ann. Phys. 2012, 524, 733–740.

    Article  Google Scholar 

  14. Albon, N.; Dunning, W. The observation of growth steps on sucrose crystals. ActaCryst. 1959, 12, 219–221.

    Google Scholar 

  15. Govorov, A. O.; Bryant, G. W.; Zhang, W.; Skeini, T.; Lee, J.; Kotov, N. A.; Slocik, J. M.; Naik, R. R. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 2006, 6, 984–994.

    Article  Google Scholar 

  16. Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous synthesis of thiol-capped CdTenanocrystals: State-of-the-art. J. Phys. Chem. C 2007, 111, 14628–14637.

    Article  Google Scholar 

  17. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdSnanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

  18. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22.

    Google Scholar 

  19. Haiss, W.; Thanh, N. T.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem. 2007, 79, 4215–4221.

    Article  Google Scholar 

  20. Glauert, A. Epoxy resins: An update on their selection and use. Microsc. Anal. 1991, 15–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmi Volkan Demir.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, T., Soran-Erdem, Z., Hernandez-Martinez, P.L. et al. Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Res. 8, 860–869 (2015). https://doi.org/10.1007/s12274-014-0568-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0568-y

Keywords

Navigation